Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Metab ; 5(7): 1111-1126, 2023 07.
Article in English | MEDLINE | ID: mdl-37349485

ABSTRACT

Regulation of CO2 fixation in cyanobacteria is important both for the organism and global carbon balance. Here we show that phosphoketolase in Synechococcus elongatus PCC7942 (SeXPK) possesses a distinct ATP-sensing mechanism, where a drop in ATP level allows SeXPK to divert precursors of the RuBisCO substrate away from the Calvin-Benson-Bassham cycle. Deleting the SeXPK gene increased CO2 fixation particularly during light-dark transitions. In high-density cultures, the Δxpk strain showed a 60% increase in carbon fixation and unexpectedly resulted in sucrose secretion without any pathway engineering. Using cryo-EM analysis, we discovered that these functions were enabled by a unique allosteric regulatory site involving two subunits jointly binding two ATP, which constantly suppresses the activity of SeXPK until the ATP level drops. This magnesium-independent ATP allosteric site is present in many species across all three domains of life, where it may also play important regulatory functions.


Subject(s)
Carbon Dioxide , Photosynthesis , Carbon Dioxide/metabolism , Photosynthesis/physiology , Carbon Cycle , Adenosine Triphosphate/metabolism
3.
Front Neurosci ; 17: 1175478, 2023.
Article in English | MEDLINE | ID: mdl-37274220

ABSTRACT

Despite the fact that sleep deprivation substantially affects the way animals regulate their body temperature, the specific mechanisms behind this phenomenon are not well understood. In both mammals and flies, neural circuits regulating sleep and thermoregulation overlap, suggesting an interdependence that may be relevant for sleep function. To investigate this relationship further, we exposed flies to 12 h of sleep deprivation, or 48 h of sleep fragmentation and evaluated temperature preference in a thermal gradient. Flies exposed to 12 h of sleep deprivation chose warmer temperatures after sleep deprivation. Importantly, sleep fragmentation, which prevents flies from entering deeper stages of sleep, but does not activate sleep homeostatic mechanisms nor induce impairments in short-term memory also resulted in flies choosing warmer temperatures. To identify the underlying neuronal circuits, we used RNAi to knock down the receptor for Pigment dispersing factor, a peptide that influences circadian rhythms, temperature preference and sleep. Expressing UAS-PdfrRNAi in subsets of clock neurons prevented sleep fragmentation from increasing temperature preference. Finally, we evaluated temperature preference after flies had undergone a social jet lag protocol which is known to disrupt clock neurons. In this protocol, flies experience a 3 h light phase delay on Friday followed by a 3 h light advance on Sunday evening. Flies exposed to social jet lag exhibited an increase in temperature preference which persisted for several days. Our findings identify specific clock neurons that are modulated by sleep disruption to increase temperature preference. Moreover, our data indicate that temperature preference may be a more sensitive indicator of sleep disruption than learning and memory.

4.
Mar Drugs ; 16(11)2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30366389

ABSTRACT

Memory retrieval dysfunction is a symptom of schizophrenia, autism spectrum disorder (ASD), and absence epilepsy (AE), as well as an early sign of Alzheimer's disease. To date, few drugs have been reported to enhance memory retrieval. Here, we found that a coral-derived natural product, excavatolide-B (Exc-B), enhances contextual memory retrieval in both wild-type and Cav3.2-/- mice via repressing the delayed rectifier potassium current, thus lowering the threshold for action potential initiation and enhancing induction of long-term potentiation (LTP). The human CACNA1H gene encodes a T-type calcium channel (Cav3.2), and its mutation is associated with schizophrenia, ASD, and AE, which are all characterized by abnormal memory function. Our previous publication demonstrated that Cav3.2-/- mice exhibit impaired contextual-associated memory retrieval, whilst their retrieval of spatial memory and auditory cued memory remain intact. The effect of Exc-B on enhancing the retrieval of context-associated memory provides a hope for novel drug development.


Subject(s)
Delayed Rectifier Potassium Channels/antagonists & inhibitors , Diterpenes/pharmacology , Hippocampus/drug effects , Memory/drug effects , Animals , Behavior, Animal , Calcium Channels, T-Type/genetics , Conditioning, Psychological/drug effects , Delayed Rectifier Potassium Channels/metabolism , Dendritic Spines/drug effects , Fear/psychology , Hippocampus/metabolism , Long-Term Potentiation/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture
SELECTION OF CITATIONS
SEARCH DETAIL
...