Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Neurol ; 30(10): 3377-3393, 2023 10.
Article in English | MEDLINE | ID: mdl-37422902

ABSTRACT

BACKGROUND: Most episodic ataxias (EA) are autosomal dominantly inherited and characterized by recurrent attacks of ataxia and other paroxysmal and non-paroxysmal features. EA is often caused by pathogenic variants in the CACNA1A, KCNA1, PDHA1, and SLC1A3 genes, listed as paroxysmal movement disorders (PxMD) by the MDS Task Force on the Nomenclature of Genetic Movement Disorders. Little is known about the genotype-phenotype correlation of the different genetic EA forms. METHODS: We performed a systematic review of the literature to identify individuals affected by an episodic movement disorder harboring pathogenic variants in one of the four genes. We applied the standardized MDSGene literature search and data extraction protocol to summarize the clinical and genetic features. All data are available via the MDSGene protocol and platform on the MDSGene website (https://www.mdsgene.org/). RESULTS: Information on 717 patients (CACNA1A: 491, KCNA1: 125, PDHA1: 90, and SLC1A3: 11) carrying 287 different pathogenic variants from 229 papers was identified and summarized. We show the profound phenotypic variability and overlap leading to the absence of frank genotype-phenotype correlation aside from a few key 'red flags'. CONCLUSION: Given this overlap, a broad approach to genetic testing using a panel or whole exome or genome approach is most practical in most circumstances.


Subject(s)
Ataxia , Movement Disorders , Humans , Ataxia/genetics , Genotype , Phenotype
2.
Mov Disord ; 33(12): 1857-1870, 2018 12.
Article in English | MEDLINE | ID: mdl-30357936

ABSTRACT

This comprehensive MDSGene review is devoted to the three autosomal-dominant PD forms: PARK-SNCA, PARK-LRRK2, and PARK-VPS35. It follows MDSGene's standardized data extraction protocol, screened a total of 2,972 citations, and is based on fully curated phenotypic and genotypic data on 937 patients with dominantly inherited PD attributed to 44 different mutations in SNCA, LRRK2, or VPS35. All of these data are also available in an easily searchable online database (www.mdsgene.org), which additionally provides descriptive summary statistics on phenotypic and genetic data. Despite the high degree of missingness of phenotypic features and unsystematic reporting of genotype data in the original literature, the present review recapitulates many of the previously described findings including later onset of disease (median age at onset: ∼49 years) compared to recessive forms of PD of an overall excellent treatment response. Our systematic review validates previous reports showing that SNCA mutation carriers have a younger age at onset compared to LRRK2 and VPS35 (P < 0.001). SNCA mutation carriers often have additional psychiatric symptoms, and although not exclusive to only LRRK2 or VPS35 mutation carriers, LRRK2 mutation carriers have a typical form of PD, and, lastly, VPS35 mutation carriers have good response to l-dopa. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Genotype , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Phenotype , Vesicular Transport Proteins/genetics , alpha-Synuclein/genetics , Humans , Parkinson Disease/genetics
3.
Proc Natl Acad Sci U S A ; 115(22): E5164-E5173, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29760073

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2-G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.


Subject(s)
Cytophagocytosis/physiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Myeloid Cells/cytology , Parkinson Disease/physiopathology , Wiskott-Aldrich Syndrome Protein Family/metabolism , Animals , Cell Line , Drosophila , Humans , Mice , Microglia , Myeloid Cells/physiology , Signal Transduction/physiology
4.
Mov Disord ; 33(5): 730-741, 2018 05.
Article in English | MEDLINE | ID: mdl-29644727

ABSTRACT

This first comprehensive MDSGene review is devoted to the 3 autosomal recessive Parkinson's disease forms: PARK-Parkin, PARK-PINK1, and PARK-DJ1. It followed MDSGene's standardized data extraction protocol and screened a total of 3652 citations and is based on fully curated phenotypic and genotypic data on >1100 patients with recessively inherited PD because of 221 different disease-causing mutations in Parkin, PINK1, or DJ1. All these data are also available in an easily searchable online database (www.mdsgene.org), which also provides descriptive summary statistics on phenotypic and genetic data. Despite the high degree of missingness of phenotypic features and unsystematic reporting of genotype data in the original literature, the present review recapitulates many of the previously described findings including early onset (median age at onset of ∼30 years for carriers of at least 2 mutations in any of the 3 genes) of an overall clinically typical form of PD with excellent treatment response, dystonia and dyskinesia being relatively common and cognitive decline relatively uncommon. However, when comparing actual data with common expert knowledge in previously published reviews, we detected several discrepancies. We conclude that systematic reporting of phenotypes is a pressing need in light of increasingly available molecular genetic testing and the emergence of first gene-specific therapies entering clinical trials. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Genetic Association Studies , Parkinson Disease/genetics , Protein Deglycase DJ-1/genetics , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Humans , Parkinson Disease/physiopathology
5.
J Parkinsons Dis ; 8(1): 131-139, 2018.
Article in English | MEDLINE | ID: mdl-29480219

ABSTRACT

BACKGROUND: With recent advances in the search for disease-modifying therapies for Parkinson's disease (PD) the importance of identifying prodromal markers becomes greater. Non-manifesting LRRK2 mutation carriers (NMC) are at risk for developing PD, and provide a population in which to identify possible markers. OBJECTIVE: The aim of this study was to test the hypothesis that NMC have differences in daily activity, fragmentation of sleep, arm swing asymmetry, and movement variability during walking, detectable by actigraphy, as compared to matched control subjects. METHODS: Eleven NMC, fourteen PD patients (4 LRRK2-PD, 10 idiopathic PD (iPD)), and twenty-nine controls wore wristbands containing an accelerometer for seven days, and performed a daily walking task. Outcome measures included daily activity, fragmentation of activity, fragmentation of sleep, arm swing asymmetry during walking, and intra-individual variability. RESULTS: Compared to healthy controls, both NMC and LRRK2/iPD showed higher intra-individual variability in activity during walking compared to healthy controls. Individuals with LRRK2-PD/iPD, but not NMC, tend to have lower activity levels, more arm swing asymmetry and less increase of arm swing with transition from slow to faster walking speed compared to healthy controls. CONCLUSION: Higher intra-individual variability of gait-associated movements might be a useful biomarker of prodromal PD. These results encourage replication in a larger sample and longitudinal analysis is warranted.


Subject(s)
Actigraphy , Biological Variation, Individual , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation , Parkinson Disease/complications , Aged , Aged, 80 and over , Arm/physiopathology , Female , Humans , Male , Middle Aged , Parkinson Disease/genetics , Sleep Deprivation/etiology , Sleep Deprivation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...