Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 606
Filter
1.
Talanta ; 277: 126279, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38810382

ABSTRACT

N6-methyladenosine (6mA) plays a pivotal role in diverse biological processes, including cancer, bacterial toxin secretion, and bacterial drug resistance. However, to date there has not been a selective, sensitive, and simple method for quantitative detection of 6mA at single base resolution. Herein, we present a series piezoelectric quartz crystal (SPQC) sensor based on the specific recognition of transcription-activator-like effectors (TALEs) for locus-specific detection of 6mA. Detection sensitivity is enhanced through the use of a hybridization chain reaction (HCR) in conjunction with silver staining. The limit of detection (LOD) of the sensor was 0.63 pM and can distinguish single base mismatches. We demonstrate the applicability of the sensor platform by quantitating 6mA DNA at a specific site in biological matrix. The SPQC sensor presented herein offers a promising platform for in-depth study of cancer, bacterial toxin secretion, and bacterial drug resistance.

2.
Anal Chem ; 96(21): 8534-8542, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743638

ABSTRACT

The detection of DNA methylation at cytosine/guanine dinucleotide (CpG) islands in promoter regions of tumor suppressor genes has great potential for early cancer screening, diagnosis, and prognosis monitoring. Nevertheless, achieving accurate, sensitive, cost-effective, and quantitative detection of target methylated DNA remains challenging. Herein, we propose a novel piezoelectric sensor (series piezoelectric quartz crystal (SPQC)) based on transcription activator-like effectors (TALEs) for detecting DNA methylation of Ras association domain family 1 isoform A (RASSF1A) tumor suppressor genes (R-5mC). The sensor employs TALEs-Ni magnetic beads to specifically recognize and separate the R-5mC, thereby improving the detection selectivity. The TALEs-Ni magnetic beads-R-5mC complex is sheared by a nucleic acid enzyme (DNAzyme) to release the single-stranded DNA (ST). ST initiates a catalyzed hairpin assembly (CHA) reaction on the surface of the electrode, which in turn triggers the hybridization chain reaction (HCR) and silver staining for enhanced detection sensitivity. The strategy exhibits a linear response in the detection of R-5mC in the range of 1 fM to 1 nM with a detection limit of 0.79 fM. R-5mC as low as 0.01% can be detected, even in the presence of large numbers of unmethylated DNA. The detection of R-5mC in circulating cell-free DNA (cfDNA) derived from clinical plasma specimens of lung cancer patients yielded satisfactory results.


Subject(s)
Biosensing Techniques , DNA Methylation , Humans , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Electrochemical Techniques , Genes, Tumor Suppressor , Limit of Detection , Electrodes
3.
Cell Biol Int ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741282

ABSTRACT

Polycystic ovary syndrome (PCOS) is the primary cause of female infertility with a lack of universal therapeutic regimen. Although osthole exhibits numerous pharmacological activities in treating various diseases, its therapeutic effect on PCOS is undiscovered. The present study found that application of osthole improved the symptoms of PCOS mice through preventing ovarian granulosa cells (GCs) production of more estrogen and alleviating the liberation of pro-inflammatory cytokine interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha. Meanwhile, osthole enhanced ovarian antioxidant capacity and alleviated intracellular reactive oxygen species (ROS) accumulation with a concurrent attenuation for oxidative stress, while intervention of antioxidant enzymic activity and glutathione (GSH) synthesis neutralized the salvation of osthole on GCs secretory disorder and chronic inflammation. Further analysis revealed that osthole restored the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and forkhead box O 1 (Foxo1) whose repression antagonized the amelioration of osthole on the insufficiency of antioxidant capacity and accumulation of ROS. Moreover, Nrf2 served as an intermedium to mediate the regulation of osthole on Foxo1. Additionally, osthole restricted the phosphorylation of IκBα and nuclear factor kappa B (NF-κB) subunit p65 by DHEA and weakened the transcriptional activity of NF-κB, but this effectiveness was abrogated by the obstruction of Nrf2 and Foxo1, whereas adjunction of GSH renewed the redemptive effect of osthole on NF-κB whose activation caused an invalidation of osthole in rescuing the aberration of GCs secretory function and inflammation response. Collectively, osthole might relieve the symptoms of PCOS mice via Nrf2-Foxo1-GSH-NF-κB pathway.

4.
Front Microbiol ; 15: 1355486, 2024.
Article in English | MEDLINE | ID: mdl-38650878

ABSTRACT

Sugarcane smut, caused by the fungal pathogen Sporisorium scitamineum, is a prominent threat to the sugarcane industry. The development of smut resistant varieties is the ultimate solution for controlling this disease, due to the lack of other efficient control methods. Artificial inoculation method is used to evaluate the virulence differentiation of pathogens. The mostly used artificial inoculation methods are soaking of the seed canes in the teliospore solution and injection of teliospores or haploid sporidia into the sugarcane sprouts. However, due to the infection nature of the pathogen that invades the sugarcane plant through meristem tissue of the sprout or shoot, the rate of successful infection is often low and fluctuated, resulting in low confidence of the assays. We recently reported a rapid and high-throughput inoculation method called plantlet soaking by using tissue culture-derived sugarcane plantlets as the test plants. Here, we compare different inoculation methods and report the characterization of parameters that may affect the sensitivity and efficiency of the plantlet soaking technique. The results showed that sugarcane plantlets were highly vulnerable to infection, even with the inoculum density at 6.0 × 105 basidial spores/ml, and this method could be applied to all varieties tested. Notably, varieties showing high smut resistance in the field exhibited high susceptibility when inoculated with the plantlet soaking method, suggesting that the plantlet soaking method is a good complement to the traditional methods for screening germplasms with internal resistance. In addition, this method could also be used to monitor the variation of cellular virulence of the smut pathogen strains in the field.

5.
New Phytol ; 242(6): 2682-2701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622771

ABSTRACT

Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.


Subject(s)
Aspartic Acid Proteases , Cell Death , Disease Resistance , Litchi , Nicotiana , Plant Diseases , Plant Proteins , Polysaccharide-Lyases , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/genetics , Aspartic Acid Proteases/metabolism , Aspartic Acid Proteases/genetics , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Nicotiana/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Litchi/genetics , Gene Expression Regulation, Plant , Amino Acid Sequence , Ascomycota/pathogenicity , Ascomycota/physiology , Plant Immunity/genetics , Protein Binding
6.
Ann Ital Chir ; 95(1): 17-21, 2024.
Article in English | MEDLINE | ID: mdl-38469606

ABSTRACT

OBJECTIVE: The etiology, clinical presentation, diagnosis, and treatment strategies of chronic pancreatitis (CP) vary significantly between countries. Specifically, the etiology and surgical approaches to treating CP differ between China and Western countries. Therefore, this study aims to compare the disparities in CP profiles and management based on our single-center experience and recent data from the West. METHODS: From January 2007 to December 2017, a total of 130 consecutive patients with histologically confirmed chronic pancreatitis (CP) underwent surgical treatment at the First Affiliated Hospital of Nanjing Medical University. The clinical features, etiology, risk factors, and operative procedures of these CP patients were analyzed and compared with recent data from Western countries. RESULTS: Our patient cohort was predominantly male (3.19:1), with a median age of 50.2 ± 9.8 years. Upper abdominal pain was the most common symptom, present in 102 patients (78.5%). The most common etiology was obstructive factors (47.7%), followed by alcohol (34.6%). The incidence of genic mutation was 2%, significantly lower than rates reported in Western research. Steatorrhea, weight loss, and jaundice were present in 6.9%, 18.5%, and 17.7% of patients, respectively. Pancreatic cysts or pseudocysts were diagnosed in 7 patients (5.4%). The following procedures were performed: Partington procedure in 33 patients (25.4%), Frey procedure in 17 patients (13.2%), Berne procedure in 5 patients (3.9%), Beger procedure in 1 patient (0.8%), pancreaticoduodenectomy in 17 patients (13.1%), pylorus-preserving pancreaticoduodenectomy in 18 patients (13.9%), middle pancreatectomy in 1 patient (0.8%), and distal pancreatectomy in 9 patients (6.9%). Choledochojejunostomy was performed in 14 patients (10.8%), gastroenterostomy in 2 (1.5%), and 15 patients (11.5%) underwent aspiration biopsy. CONCLUSION: Our study confirms that, etiologically, obstructive chronic pancreatitis (CP) is more frequent in the Chinese population than in Western populations. Although diagnostic instruments and operative procedures in China and Western countries are roughly comparable, slight differences exist in relation to diagnostic flowcharts/criteria and the indications and optimal timing of surgery.


Subject(s)
Pancreatitis, Chronic , Humans , Male , Adult , Middle Aged , Female , Pancreatitis, Chronic/diagnosis , Pancreatitis, Chronic/epidemiology , Pancreatitis, Chronic/etiology , Pancreaticoduodenectomy/methods , Pancreatectomy/methods , Risk Factors , China/epidemiology , Treatment Outcome
7.
Pharmacology ; : 1-11, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493769

ABSTRACT

BACKGROUND: According to the World Health Organisation's Health Report 2019, approximately 17.18 million people die from cardiovascular disease each year, accounting for more than 30% of all global deaths. Therefore, the occurrence of cardiovascular disease is still a global concern. The transcription factor 21 (TCF21) plays an important role in cardiovascular diseases. This article reviews the regulation mechanism of TCF21 expression and activity and focuses on its important role in atherosclerosis in order to contribute to the development of diagnosis and treatment of cardiovascular diseases. SUMMARY: TCF21 is involved in the phenotypic regulation of vascular smooth muscle cells (VSMCs), promotes the proliferation and migration of VSMCs, and participates in the activation of inflammatory sequences. Increased proliferation and migration of VSMCs can lead to neointimal hyperplasia after vascular injury. Abnormal hyperplasia of neointima and inflammation are one of the main features of atherosclerosis. Therefore, targeting TCF21 may become a potential treatment for relieving atherosclerosis. KEY MESSAGES: TCF21 as a member of basic helix-loop-helix transcription factors regulates cell growth and differentiation by modulating gene expression during the development of different organs and plays an important role in cardiovascular development and disease. VSMCs and cells derived from VSMCs constitute the majority of plaques in atherosclerosis. TCF21 plays a key role in regulation of VSMCs' phenotype, thus accelerating atherogenesis in the early stage. However, TCF21 enhances plaque stability in late-stage atherosclerosis. The dual role of TCF21 should be considered in the translational medicine.

8.
Asian J Surg ; 47(5): 2138-2143, 2024 May.
Article in English | MEDLINE | ID: mdl-38443255

ABSTRACT

Hepatectomy is widely considered a potential treatment for hepatocellular carcinoma (HCC). Unfortunately, one-third of HCC patients have tumor recurrence within 2 years after surgery (early recurrence), accounting for more than 60% of all recurrence patients. Early recurrence is associated with a worse prognosis. Previous studies have shown that microvascular invasion (MVI) is one of the key factors for early recurrence and poor prognosis in patients with HCC after surgery. This paper reviews the latest literature and summarizes the predictors of MVI, the correlation between MVI and early recurrence, the identification of suspicious nodules or subclinical lesions, and the treatment strategies for MVI-positive HCC. The aim is to explore the management of patients with MVI-positive HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatectomy , Liver Neoplasms , Microvessels , Neoplasm Invasiveness , Neoplasm Recurrence, Local , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/surgery , Humans , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Microvessels/pathology , Prognosis , Time Factors
9.
Andrology ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506240

ABSTRACT

BACKGROUND: Like the coronavirus disease 2019, the hepatitis B virus is also wreaking havoc worldwide, which has infected over 2 billion people globally. Using an experimental animal model, our previous research observed that the hepatitis B virus genes integrated into human spermatozoa can replicate and express after being transmitted to embryos. However, as of now, this phenomenon has not been confirmed in clinical data from patients. OBJECTIVES: To explore the integration of the hepatitis B virus into patients' sperm genome and its potential clinical risks. MATERIALS AND METHODS: Forty-eight patients with chronic hepatitis B virus infection were categorized into two groups: Test Group-1 comprised 23 patients without integration of hepatitis B virus DNA within the sperm genome. Test Group-2 comprised 25 patients with integration of hepatitis B virus DNA within the sperm genome. Forty-eight healthy male donors were included as control. The standard semen parameter analysis, real-time polymerase chain reaction, quantitative real-time polymerase chain reaction, sperm chromatin structure assay, fluorescence in situ hybridization, and immunofluorescence assays were utilized. RESULTS: The difference in the median copy number of hepatitis B virus DNA per mL of sera between Test Group-1 and Group-2 was not statistically significant. In Test Group-2, the integration rate of hepatitis B virus DNA was 0.109%, which showed a significant correlation with the median copy number of hepatitis B virus DNA in motile spermatozoa (1.18 × 103 /mL). Abnormal semen parameters were found in almost all these 25 patients. The integrated hepatitis B virus S, C, X, and P genes were detected to be introduced into sperm-derived embryos through fertilization and retained their function in replication, transcription, and translation. CONCLUSION: Our findings suggest that hepatitis B virus infection can lead to sperm quality deterioration and reduced fertilization capacity. Furthermore, viral integration causes instability in the sperm genome, increasing the potential risk of termination, miscarriage, and stillbirth. This study identified an unconventional mode of hepatitis B virus transmission through genes rather than virions. The presence of viral sequences in the embryonic genome poses a risk of liver inflammation and cancer.

10.
Article in English | MEDLINE | ID: mdl-38482593

ABSTRACT

BACKGROUND: Previous observational studies have indicated a bidirectional association between metabolic syndrome (MetS) and osteoarthritis (OA). However, it remains unclear whether these bidirectional associations reflect causal relationships or shared genetic factors, and the underlying biological mechanisms of this association are not fully understood. METHODS: Leveraging summary statistics from genome-wide association studies (GWASs) conducted by the UK Biobank and the Glucose and Insulin-related Traits Consortium (MAGIC), we performed global genetic correlation analyses, genome-wide cross-trait meta-analyses, and a bidirectional two-sample Mendelian randomization analyses using summary statistics from GWASs to comprehensively assess the relationship of MetS and OA. RESULTS: We first detected an extensive genetic correlation between MetS and OA (rg=0.393, P=1.52×10-18), which was consistent in four MetS components, including waist circumference, triglycerides, hypertension and high-density lipoprotein cholesterol and OA with rg ranging from -0.229 to 0.490. We then discovered 32 variants jointly associated with MetS and OA through multi-trait Analysis of GWAS. Co-localization analysis founded 12 genes shared between MetS and OA, with functional implications in several biological pathways. Finally, MR analysis suggested genetic liability to MetS significantly increased the risk of OA, but no reverse causality was found. CONCLUSION: Our results illustrate a common genetic architecture, pleiotropic loci, as well as causality between MetS and OA, potentially enhancing our knowledge of high comorbidity and genetic processes that overlap between the two disorders.

11.
Int J Nanomedicine ; 19: 2553-2571, 2024.
Article in English | MEDLINE | ID: mdl-38505171

ABSTRACT

Purpose: Accumulating evidence indicates that mesenchymal stem cells (MSCs)-derived exosomes hold significant potential for the treatment of atherosclerosis. However, large-scale production and organ-specific targeting of exosomes are still challenges for further clinical applications. This study aims to explore the targeted efficiency and therapeutic potential of biomimetic platelet membrane-coated exosome-mimetic nanovesicles (P-ENVs) in atherosclerosis. Methods: To produce exosome-mimetic nanovesicles (ENVs), MSCs were successively extruded through polycarbonate porous membranes. P-ENVs were engineered by fusing MSC-derived ENVs with platelet membranes and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. The stability and safety of P-ENVs were also assessed. The targeted efficacy of P-ENVs was evaluated using an in vivo imaging system (IVIS) spectrum imaging system and immunofluorescence. Histological analyses, Oil Red O (ORO) staining, and Western blot were used to investigate the anti-atherosclerotic effectiveness of P-ENVs. Results: Both ENVs and P-ENVs exhibited similar characteristics to exosomes. Subsequent miRNA sequencing of P-ENVs revealed their potential to mitigate atherosclerosis by influencing biological processes related to cholesterol metabolism. In an ApoE-/- mice model, the intravenous administration of P-ENVs exhibited enhanced targeting of atherosclerotic plaques, resulting in a significant reduction in lipid deposition and necrotic core area. Our in vitro experiments showed that P-ENVs promoted cholesterol efflux and reduced total cholesterol content in foam cells. Further analysis revealed that P-ENVs attenuated intracellular cholesterol accumulation by upregulating the expression of the critical cholesterol transporters ABCA1 and ABCG1. Conclusion: This study highlighted the potential of P-ENVs as a novel nano-drug delivery platform for enhancing drug delivery efficiency while concurrently mitigating adverse reactions in atherosclerotic therapy.


Subject(s)
Atherosclerosis , Exosomes , Mesenchymal Stem Cells , Mice , Animals , Exosomes/metabolism , Biomimetics , Membrane Fusion , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cholesterol/metabolism , Mesenchymal Stem Cells/metabolism
12.
Proc Natl Acad Sci U S A ; 121(11): e2312136121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38446848

ABSTRACT

Anxiety is a remarkably common condition among patients with pharyngitis, but the relationship between these disorders has received little research attention, and the underlying neural mechanisms remain unknown. Here, we show that the densely innervated pharynx transmits signals induced by pharyngeal inflammation to glossopharyngeal and vagal sensory neurons of the nodose/jugular/petrosal (NJP) superganglia in mice. Specifically, the NJP superganglia project to norepinephrinergic neurons in the nucleus of the solitary tract (NTSNE). These NTSNE neurons project to the ventral bed nucleus of the stria terminalis (vBNST) that induces anxiety-like behaviors in a murine model of pharyngeal inflammation. Inhibiting this pharynx→NJP→NTSNE→vBNST circuit can alleviate anxiety-like behaviors associated with pharyngeal inflammation. This study thus defines a pharynx-to-brain axis that mechanistically links pharyngeal inflammation and emotional response.


Subject(s)
Pharyngitis , Pharynx , Humans , Animals , Mice , Anxiety , Brain , Sensory Receptor Cells , Inflammation
13.
Dig Dis Sci ; 69(3): 978-988, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341392

ABSTRACT

AIM: This study aimed to assess the effectiveness and safety of tenofovir alafenamide fumarate (TAF) in the prevention of mother-to-child transmission (MTCT) of hepatitis B virus (HBV). METHODS: We performed a meta-analysis of studies from the Cochrane Library, PubMed, ClinicalTrials.gov, Web of Science, EMBASE, China National Knowledge Infrastructure (CNKI), China Medical Information Network, and Wanfang databases. The databases were searched from inception to January 7, 2023, for cohort studies and randomized controlled trials (RCTs) comparing the use of TAF antivirals to other antivirals during pregnancy. We combined the data by means of a random-effect DerSimonian-Laird model and risk ratios (RRs) or a random-effect inverse variance model and standardized mean differences (SMDs) to determine the influence on mothers and infants. Our primary outcomes were infant weight, height, head size, birth defects, and Apgar scores. Additionally, we assessed whether newborns tested positive for hepatitis B surface antigen (HBsAg) at birth and at six months of age. The secondary outcomes of our investigation were alterations in levels of HBV deoxyribonucleic acid (DNA), alanine aminotransferase (ALT), total bilirubin (TBIL), blood creatinine, and urine ß2-microglobulin (ß2-M) in mothers. RESULTS: An extensive literature search identified 216 relevant publications; three cohort studies and two RCTs were included in this study. A total of 341 mothers were treated with TAF, and 342 were treated with other antiviral agents. TAF was as effective as other antiviral medications at lowering HBV MTCT rates at birth and at 6 months of age and ALT, TBIL, and HBV DNA levels. Moreover, compared with other antiviral drugs, TAF did not affect infant weight, height, head size, Apgar scores, and birth defects or maternal blood creatinine or ß2-M levels. CONCLUSIONS: TAF antiviral therapy during pregnancy was found to be safe for both mothers and fetuses.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Female , Humans , Infant , Infant, Newborn , Pregnancy , Adenine/adverse effects , Antiviral Agents/adverse effects , Creatinine , DNA, Viral , Fumarates/adverse effects , Hepatitis B/drug therapy , Hepatitis B/prevention & control , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Infectious Disease Transmission, Vertical/prevention & control
14.
J Agric Food Chem ; 72(6): 2963-2976, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305024

ABSTRACT

Polycystic ovarian syndrome (PCOS) is the major cause of infertility in reproductive women, but no universal drug is feasible. Although puerarin clinically treats cerebrovascular and cardiovascular diseases, its curative effect on PCOS remains elusive. The present study discovered that administration of puerarin restored estrous cycle of PCOS mice and diminished the number of cystic follicles with the concomitant recovery for circulating testosterone, LH and FSH levels, and LH/FSH ratio, indicating the therapeutic role of puerarin in PCOS. KEGG analysis of differential genes between PCOS and control revealed the enrichment in MAPK and calcium signaling pathway. Application of puerarin restricted the phosphorylation of ERK1/2 and JNK, whose activation neutralized the improvement of puerarin on the secretory function and apoptosis of ovarian granulosa cells (GCs). Meanwhile, puerarin alleviated the accumulation of cytosolic Ca2+ through restricting the opening of Ryr and Itpr channels, but this effectiveness was counteracted by the activatory ERK1/2 and JNK. Attenuation of cytosolic Ca2+ counteracted the antagonistic effects of ERK1/2 and JNK activation on puerarin's role in rescuing the calcineurin and Nfatc. Further analysis manifested that Mcu had been authenticated as a direct downstream target of Nfatc to mediate the amelioration of puerarin on mitochondrial Ca2+ uptake. Moreover, puerarin prevented the disorder of ATP content, mitochondrial membrane potential, and mitochondrial permeability transition pore opening through maintaining mitochondrial Ca2+ homeostasis. Collectively, puerarin might ameliorate the symptoms of PCOS mice through preventing mitochondrial dysfunction that is dependent on the maintenance of intracellular Ca2+ homeostasis after inactivation of ERK1/2 and JNK.


Subject(s)
Isoflavones , Mitochondrial Diseases , Polycystic Ovary Syndrome , Female , Humans , Mice , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Calcium/metabolism , Granulosa Cells , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/therapeutic use , Mitochondrial Diseases/metabolism
15.
ACS Appl Mater Interfaces ; 16(8): 10813-10821, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38359411

ABSTRACT

Hydrogel, recognized as a promising biomaterial for tissue engineering, possesses notable characteristics, including high water uptake, an interconnected porous structure, and excellent permeability. However, the intricate task of fabricating a hierarchically macro-micronanoporous structure, essential for providing adequate space for nutrient diffusion and cell growth within hydrogels, remains a formidable challenge. In response to these challenges, this study introduces a sustainable and straightforward three-dimensional (3D) foaming printing strategy to produce hierarchically macro-micronanoporous hydrogels (HPHs) without the utilization of porogens and post-etching process. This method entails the controlled generation of air bubbles within the hydrogels through the application of optimal mechanical stirring rates. Subsequent ultraviolet (UV) cross-linking serves to effectively stabilize the macropores within the HPHs. The resulting hierarchically macro-micronanoporous structures demonstrate a substantial improvement in the viability, adhesion, and proliferation of human umbilical vein endothelial cells (HUVECs) when incubated with the hydrogels. These findings present a significant advancement in the fabrication of hierarchically macro-micronanoporous hydrogels, with potential applications in the fields of tissue engineering and organoid development.


Subject(s)
Biomimetics , Hydrogels , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Tissue Engineering/methods , Human Umbilical Vein Endothelial Cells , Cell Proliferation , Printing, Three-Dimensional , Tissue Scaffolds/chemistry
16.
Plant Commun ; 5(6): 100849, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38384133

ABSTRACT

Brassinosteroids (BRs) are a class of phytohormones that regulate plant growth and development. In previous studies, we cloned and identified PROTEIN PHOSPHATASE WITH KELCH-LIKE1 (OsPPKL1) as the causal gene for the quantitative trait locus GRAIN LENGTH3 (qGL3) in rice (Oryza sativa). We also showed that qGL3/OsPPKL1 is mainly located in the cytoplasm and nucleus and negatively regulates BR signaling and grain length. Because qGL3 is a negative regulator of BR signaling, its turnover is critical for rapid response to changes in BRs. Here, we demonstrate that qGL3 interacts with the WD40-domain-containing protein WD40-REPEAT PROTEIN48 (OsWDR48), which contains a nuclear export signal (NES). The NES signal is crucial for the cytosolic localization of OsWDR48 and also functions in the self-turnover of qGL3. We show that OsWDR48 physically interacts with and genetically acts through qGL3 to modulate BR signaling. Moreover, qGL3 may indirectly promote the phosphorylation of OsWDR48 at the Ser-379 and Ser-386 sites. Substitutions of both phosphorylation sites in OsWDR48 to non-phosphorylatable alanine enhanced the strength of the OsWDR48-qGL3 interaction. Furthermore, we found that brassinolide can promote the accumulation of non-phosphorylated OsWDR48, leading to strong interaction intensity between qGL3 and OsWDR48. Taken together, our results show that OsWDR48 facilitates qGL3 retention and induces degradation of qGL3 in the cytoplasm. These findings suggest that qGL3 self-modulates its turnover by binding to OsWDR48 to regulate its cytoplasmic localization and stability, leading to efficient orchestration of BR signal transduction in rice.


Subject(s)
Brassinosteroids , Oryza , Plant Proteins , Signal Transduction , Oryza/genetics , Oryza/metabolism , Brassinosteroids/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Gene Expression Regulation, Plant , Phosphorylation
17.
J Cancer ; 15(5): 1429-1441, 2024.
Article in English | MEDLINE | ID: mdl-38356720

ABSTRACT

Background: Renal cell carcinoma (RCC) frequently exhibits activating PI3K-Akt-mTOR pathway mutations. 3-Phosphoinositide-dependent kinase 1 (PDPK1 or PDK1) has been established to play a pivotal role in modulating PI3K pathway signaling. mTOR is the main autophagy-initiating factor. However, limited advances have been made in understanding the relationship between PDPK1 and autophagy in RCC. Methods: GSK2334470 (GSK470), a novel and highly specific inhibitor of PDPK1, was selected to investigate the anticancer effects in two RCC cell lines. Cell growth was assessed by CCK-8 test and colony formation. Changes in the protein levels of key Akt/mTOR pathway components and apoptosis markers were assessed by Western blotting. Autophagy was assessed by using LC3B expression, transmission electron microscopy, and a tandem mRFP-EGFP-LC3 construct. The effect of PDPK1 and autophagy inhibitor chloroquine in RCC in vivo was examined in a mouse tumor-bearing model. Results: GSK470 significantly inhibited cell proliferation and induces apoptosis in A498 and 786-O RCC cells. GSK470 downregulates the phosphorylation of PDPK1, thereby inhibiting downstream phosphorylation of Akt1 at Thr308 and Ser473 and mTOR complex 1 (mTORC1) activity. Treatment with insulin-like growth factor-1 (IGF-1) partially restored GSK470-induced behaviors/activities. Interestingly, treatment of A498 and 786-O cells with GSK470 or siPDPK1 induced significant increases in the hallmarks of autophagy, including autophagosome accumulation, autophagic flux, and LC3B expression. Importantly, GSK470 and chloroquine synergistically inhibited the growth of RCC cells in vitro and in xenograft models, supporting the protective role of autophagy activation upon blockade of the PDPK1-Akt-mTOR signaling pathway. Conclusion: Our study provides new insight into PDPK1 inhibition combined with autophagy inhibition as a useful treatment strategy for RCC.

18.
Br J Anaesth ; 132(4): 735-745, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336518

ABSTRACT

BACKGROUND: Cigarette smoking is commonly reported among chronic pain patients in the clinic. Although chronic nicotine exposure is directly linked to nociceptive hypersensitivity in rodents, underlying neurobiological mechanisms remain unknown. METHODS: Multi-tetrode recordings in freely moving mice were used to test the activity of dopaminergic projections from the ventral tegmental area (VTA) to pyramidal neurones in the anterior cingulate cortex (ACC) in chronic nicotine-treated mice. The VTA→ACC dopaminergic pathway was inhibited by optogenetic manipulation to detect chronic nicotine-induced allodynia (pain attributable to a stimulus that does not normally provoke pain) assessed by von Frey monofilaments (force units in g). RESULTS: Allodynia developed concurrently with chronic (28-day) nicotine exposure in mice (0.36 g [0.0141] vs 0.05 g [0.0018], P<0.0001). Chronic nicotine activated dopaminergic projections from the VTA to pyramidal neurones in the ACC, and optogenetic inhibition of VTA dopaminergic terminals in the ACC alleviated chronic nicotine-induced allodynia in mice (0.06 g [0.0064] vs 0.28 g [0.0428], P<0.0001). Moreover, optogenetic inhibition of Drd2 dopamine receptor signalling in the ACC attenuated nicotine-induced allodynia (0.07 g [0.0082] vs 0.27 g [0.0211], P<0.0001). CONCLUSIONS: These findings implicate a role of Drd2-mediated dopaminergic VTA→ACC pathway signalling in chronic nicotine-elicited allodynia.


Subject(s)
Gyrus Cinguli , Nicotine , Humans , Mice , Animals , Nicotine/pharmacology , Hyperalgesia/chemically induced , Dopamine/metabolism , Pain
19.
J Integr Neurosci ; 23(1): 12, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38287842

ABSTRACT

BACKGROUND: The acute changes that occur in the small-world topology of the brain in concussion patients remain unclear. Here, we investigated acute changes in the small-world organization of brain networks in concussion patients and their influence on persistent post-concussion symptoms. METHODS: Eighteen concussion patients and eighteen age-matched controls were enrolled in this study. All participants underwent computed tomography, magnetic resonance imaging (MRI), susceptibility weighted imaging, and blood oxygen level-dependent functional MRI. A complex network analysis method based on graph theory was used to calculate the parameters of small-world networks under different degrees of network sparsity. All subjects were evaluated using the Glasgow Coma Scale and Rivermead Postconcussion Symptom Questionnaire. RESULTS: Compared with the controls, the normalized cluster coefficient (γ) of whole brain networks in patients and the "small-world" index (σ) was slightly enhanced, whereas the standardized minimum path (λ) was slightly shorter. Whole brain effect (Eglobal) and local effect (Elocal) changes were not pronounced. Under the condition of minimum network sparsity (Dmin = 0.13), the numbers of nodes in the "right intraorbital superior frontal gyrus" (Anatomical Automatic Labeling, AAL26), right globus pallidus (AAL76), and bilateral temporal transverse gyrus (AAL79,80) in brain concussion patients were significantly lower. The numbers of nodes in the left subcapital lobe (AAL61) and left occipital gyrus (AAL51) were significantly higher, and the normalized cluster coefficients of the right intraorbital supraphalus (AAL26) and left posterior cingulate gyrus (AAL35) were significantly increased. The normalized clustering coefficients of the right triangular subfrontal gyrus (AAL55) (based on the normalized clustering coefficients of nodes in AAL14) and left sub-parietal lobes (AAL61) were significantly reduced. The mean local effects of nodes in the right intraorbital upper frontal gyrus (AAL26), left posterior cingulate gyrus (AAL35), and bilateral auxiliary motor cortex (AAL19, 20) were enhanced, whereas the mean local effects of the bilateral triangular inferior frontal gyrus (AAL13,14) and left insular cap (AAL11) were reduced (p < 0.05). CONCLUSIONS: The overall trend of network topology abnormalities in patients was random, and generalized and local functional abnormalities were seen. Changes in the function and affective circuitry of the resting default network were particularly pronounced in these patients, which we speculate may be one of the main drivers of the cognitive dysfunction and mood changes seen in concussion patients.


Subject(s)
Brain Concussion , Humans , Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Brain , Brain Mapping/methods , Parietal Lobe , Frontal Lobe , Magnetic Resonance Imaging/methods
20.
BMC Complement Med Ther ; 24(1): 21, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178115

ABSTRACT

BACKGROUND: This study aims to assess the efficacy and safety of Qingpeng ointment (QPO), a Tibetan medicine for alleviating symptoms in individuals with acute gouty arthritis (AGA). METHODS: This study was a randomized, double-blind, placebo-controlled trial that involved individuals with AGA whose joint pain, as measured on a visual analog scale (VAS) from 0 to 10, was equal to or greater than 3. The participants were randomly assigned to either the QPO or the placebo group and received their respective treatments twice daily for seven consecutive days. In case of intolerable pain, the participants were allowed to use diclofenac sodium sustained-release tablets as a rescue medicine. The primary outcomes measured were joint pain and swelling, while the secondary outcomes included joint mobility, redness, serum uric acid levels, C-reactive protein levels, and the amount of remaining rescue medicine. Any adverse events that occurred during the trial were also recorded. RESULTS: A total of 203 cases were divided into two groups, with balanced baselines: 102 in the QPO group and 101 in the placebo group. For joint pain, differences between the groups were notable in the VAS scores [1.75 (0, 3.00) versus 2.00 (1.00, 3.50); P = 0.038], changes in VAS [5.00 (3.00, 6.00) versus 4.00 (2.00, 6.00); P = 0.036], and disappearance rate [26.47% compared to 15.84%; P = 0.046] after treatment. Concerning joint swelling, significant between-group differences were observed in the VAS scores [1.00 (0, 2.30) versus 2.00 (0.70, 3.00); P = 0.032] and disappearance rate [33.33% compared to 21.78%; P = 0.046] at treatment completion. The QPO group exhibited a statistically significant mobility improvement compared to the placebo group (P = 0.004). No significant differences were found in other secondary outcomes. Five patients, four from the QPO group and one from the other, encountered mild adverse events, primarily skin irritation. All of these cases were resolved after dosage reduction or discontinuation of the medication. CONCLUSIONS: Compared to the placebo, QPO exhibits positive effects on AGA by alleviating pain, reducing swelling, and enhancing joint mobility, without causing significant adverse effects. TRIAL REGISTRATION: ISRCTN34355813. Registered on 25/01/2021.


Subject(s)
Arthritis, Gouty , Humans , Arthritis, Gouty/drug therapy , Ointments/therapeutic use , Medicine, Tibetan Traditional/adverse effects , Uric Acid , Pain/drug therapy , Arthralgia
SELECTION OF CITATIONS
SEARCH DETAIL
...