Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 2(15): 1854-1864, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30061310

ABSTRACT

The Xga and CD99 antigens of the human Xg blood group system show a unique and sex-specific phenotypic relationship. The phenotypic relationship is believed to result from transcriptional coregulation of the XG and CD99 genes, which span the pseudoautosomal boundary of the X and Y chromosomes. However, the molecular genetic background responsible for these blood groups has remained undetermined. During the present investigation, we initially conducted a pilot study aimed at individuals with different Xga/CD99 phenotypes; this used targeted next-generation sequencing of the genomic areas relevant to XG and CD99 This was followed by a large-scale association study that demonstrated a definite association between a single nucleotide polymorphism (SNP) rs311103 and the Xga/CD99 blood groups. The G and C genotypes of SNP rs311103 were associated with the Xg(a+)/CD99H and Xg(a-)/CD99L phenotypes, respectively. The rs311103 genomic region with the G genotype was found to have stronger transcription-enhancing activity by reporter assay, and this occurred specifically with erythroid-lineage cells. Such activity was absent when the same region with the C genotype was investigated. In silico analysis of the polymorphic rs311103 genomic regions revealed that a binding motif for members of the GATA transcription factor family was present in the rs311103[G] region. Follow-up investigations showed that the erythroid GATA1 factor is able to bind specifically to the rs311103[G] region and markedly stimulates the transcriptional activity of the rs311103[G] segment. The present findings identify the genetic basis of the erythroid-specific Xga/CD99 blood group phenotypes and reveal the molecular background of their formation.


Subject(s)
12E7 Antigen/genetics , Blood Group Antigens/genetics , Cell Adhesion Molecules/genetics , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Genotype , Polymorphism, Single Nucleotide , Female , GATA1 Transcription Factor/genetics , Humans , Male
2.
Transfusion ; 58(4): 1054-1064, 2018 04.
Article in English | MEDLINE | ID: mdl-29399809

ABSTRACT

BACKGROUND: The P1 /P2 phenotypic polymorphism is one of the earliest blood groups discovered in humans. These blood groups have been connected to different levels of expression of the A4GALT gene in P1 and P2 red blood cells; however, the detailed molecular genetic mechanism that leads to these two phenotypes has not been established. STUDY DESIGN AND METHODS: After our previous identification of an association between the single-nucleotide polymorphisms (SNPs) rs2143918 and rs5751348 in A4GALT gene and the P1 /P2 phenotype, we conduct a survey of transcription factors that might connect these SNPs with the differential expression of the P1 -A4GALT and P2 -A4GALT alleles. An in silico analysis of potential transcription factor binding motifs within the polymorphic SNPs rs2143918 and rs5751348 genomic regions was performed, and this was followed by reporter assays examining the candidate transcription factors, gene expression profiling, electrophoretic mobility shift assays, and P1 -A4GALT and P2 -A4GALT allelic expression analysis. RESULTS: The results revealed that the differential binding of transcription factor early growth response 1 to the SNP rs5751348 genomic region with the different genotypes in the A4GALT gene leads to differential activation of P1 -A4GALT and P2 -A4GALT expression. CONCLUSION: The present investigation, together with our previous study (Lai et al., Transfusion 2014;54:3222-31), have elucidated the molecular genetic details associated with the P1 /P2 blood groups.


Subject(s)
Early Growth Response Protein 1/physiology , Galactosyltransferases/biosynthesis , Gene Expression Regulation , Polymorphism, Single Nucleotide , Alleles , Computer Simulation , Early Growth Response Transcription Factors/physiology , Electrophoretic Mobility Shift Assay , Galactosyltransferases/genetics , Gene Expression Profiling , Genes, Reporter , HEK293 Cells , Humans , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...