Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 358: 259-272, 2023 06.
Article in English | MEDLINE | ID: mdl-37121514

ABSTRACT

Osteoporosis (OP) affects millions worldwide but currently cannot be cured. Suppressing the level of miR-214 in osteoclasts by the anti-miRNA oligonucleotide (AMO) anti-miR-214 reverses bone absorption and provides a potential treatment. Here we report a peptide-guided delivery strategy using red blood cell extracellular vesicles (RBCEVs) as the vehicle to realize osteoclast-targeted delivery of anti-miR-214. A bi-functional peptide, TBP-CP05, which binds to both the CD63 on RBCEVs and receptors on osteoclasts, acts as the guide. TBP-CP05 binds with RBCEVs through CP05, displays the TRAP-binding peptide (TBP) on the surface of EVs, and endows RBCEVs with osteoclast-targeting capability both in vitro and in vivo. Intravenous injection of the osteoclast-targeting RBCEVs (OT-RBCEVs) led to the enrichment of EVs in the bone skeleton, significant inhibition of the osteoclast activity, elevated osteoblast activity, and improved bone density in osteoporotic mice. Altogether, this work demonstrates efficient guidance of drug-loaded EVs to the targeted cells in vivo using bi-functional fusion peptides, and showcases that targeted delivery of anti-miR-214 by OT-RBCEVs may be a viable method for OP treatment. SIGNIFICANCE STATEMENT. Surface functionalization of EVs endows these nanovesicles cell-specific targeting property which guides the drug cargos to specific tissues and cells with higher accuracy, longer retention, and minimal off-target effects. Methods to functionalize EVs with minimal procedures are highly desired for clinical applications. Here we present a facile method using a bifunctional fusion peptide to guide RBCEVs to osteoclasts. A simple incubation of the bifunctional peptide and RBCEVs results in osteoclast-targeting RBCEVs (OT-RBCEVs) that effectively deliver anti-miR-214 to osteoclasts in vivo in a mouse model of osteoporosis, bringing a potential therapy to osteoporotic patients. This is, to our knowledge, the first report on peptide functionalization of RBCEVs and osteoclast-targeted delivery using RBCEVs.


Subject(s)
Extracellular Vesicles , MicroRNAs , Osteoporosis , Mice , Animals , Osteoclasts/metabolism , MicroRNAs/genetics , Oligonucleotides/genetics , Antagomirs/metabolism , Antagomirs/pharmacology , Osteoporosis/metabolism , Extracellular Vesicles/metabolism , Peptides/pharmacology , Erythrocytes/metabolism
2.
Comput Struct Biotechnol J ; 20: 6259-6270, 2022.
Article in English | MEDLINE | ID: mdl-36420163

ABSTRACT

Transcription factors (TFs) play important roles in regulating multiple biological processes by binding to promoter regions and regulating the global gene transcription levels. Pseudomonas syringae is a Gram-negative phytopathogenic bacterium harbouring 301 putative TFs in its genome, approximately 50 of which are responsible for virulence-related gene and pathway regulation. Over the past decades, RNA sequencing, chromatin immunoprecipitation sequencing, high-throughput systematic evolution of ligands by exponential enrichment, and other technologies have been applied to identify the functions of master regulators and their interactions in virulence-related pathways. This review summarises the recent advances in the regulatory networks of TFs involved in the type III secretion system (T3SS) and non-T3SS virulence-associated pathways, including motility, biofilm formation, quorum sensing, nucleotide-based secondary messengers, phytotoxins, siderophore production, and oxidative stress. Moreover, this review discusses the future perspectives in terms of TF-mediated pathogenesis mechanisms and provides novel insights that will help combat P. syringae infections based on the regulatory networks of TFs.

3.
mBio ; 13(5): e0164322, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36200779

ABSTRACT

Transcription factors (TFs) regulate transcription by binding to the specific sequences at the promoter region. However, the mechanisms and functions of TFs binding within the coding sequences (CDS) remain largely elusive in prokaryotes. To this end, we collected 409 data sets for bacterial TFs, including 104 chromatin immunoprecipitation sequencing (ChIP-seq) assays and 305 data sets from the systematic evolution of ligands by exponential enrichment (SELEX) in seven model bacteria. Interestingly, these TFs displayed the same binding capabilities for both coding and intergenic regions. Subsequent biochemical and genetic experiments demonstrated that several TFs bound to the coding regions and regulated the transcription of the binding or adjacent genes. Strand-specific RNA sequencing revealed that these CDS-binding TFs regulated the activity of the cryptic promoters, resulting in the altered transcription of the corresponding antisense RNA. TF RhpR hindered the transcriptional elongation of a subgenic transcript within a CDS. A ChIP-seq and Ribo-seq coanalysis revealed that RhpR influenced the translational efficiency of binding genes. Taken together, the present study reveals three regulatory mechanisms of CDS-bound TFs within individual genes, operons, and antisense RNAs, which demonstrate the variability of the regulatory mechanisms of TFs and expand upon the complexity of bacterial transcriptomes. IMPORTANCE Although bacterial TFs regulate transcription by binding to specific sequences at the promoter region, little is known about the mechanisms and functions of TFs binding within the CDS. In this study, we show that bacterial TFs have same binding pattern in both CDS and promoter regions, and we reveal three regulatory mechanisms of CDS-bound TF that together demonstrate the complexity of the regulatory mechanisms of bacterial TFs and the wide spread of internal cryptic promoters in CDS.


Subject(s)
Bacteria , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic , Bacteria/genetics , RNA, Antisense , DNA, Intergenic , Binding Sites/genetics
4.
Cell Biosci ; 12(1): 147, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064743

ABSTRACT

BACKGROUND: Sufficient nutrition contributes to rapid translational elongation and protein synthesis in eukaryotic cells and prokaryotic bacteria. Fast synthesis and accumulation of type III secretion system (T3SS) proteins conduce to the invasion of pathogenic bacteria into the host cells. However, the translational elongation patterns of T3SS proteins in pathogenic bacteria under T3SS-inducing conditions remain unclear. Here, we report a mechanism of translational elongation of T3SS regulators, effectors and structural protein in four model pathogenic bacteria (Pseudomonas syringae, Pseudomonas aeruginosa, Xanthomonas oryzae and Ralstonia solanacearum) and a clinical isolate (Pseudomonas aeruginosa UCBPP-PA14) under nutrient-limiting conditions. We proposed a luminescence reporter system to quantitatively determine the translational elongation rates (ERs) of T3SS regulators, effectors and structural protein under different nutrient-limiting conditions and culture durations. RESULTS: The translational ERs of T3SS regulators, effectors and structural protein in these pathogenic bacteria were negatively regulated by the nutrient concentration and culture duration. The translational ERs in 0.5× T3SS-inducing medium were the highest of all tested media. In 1× T3SS-inducing medium, the translational ERs were highest at 0 min and then rapidly decreased. The translational ERs of T3SS regulators, effectors and structural protein were inhibited by tRNA degradation and by reduced levels of elongation factors (EFs). CONCLUSIONS: Rapid translational ER and synthesis of T3SS protein need adequate tRNAs and EFs in nutrient-limiting conditions. Numeric presentation of T3SS translation visually indicates the invasion of bacteria and provides new insights into T3SS expression that can be applied to other pathogenic bacteria.

5.
Environ Microbiol ; 24(7): 3242-3255, 2022 07.
Article in English | MEDLINE | ID: mdl-35702827

ABSTRACT

The opportunistic pathogen Pseudomonas aeruginosa has evolved several systems to adapt to complex environments. The GntR family proteins play important roles in the regulation of metabolic processes and bacterial pathogenesis. In this study, we uncovered that the gene clusters of PA1513-PA1518 and PA1498-PA1502 in P. aeruginosa are required for uric acid and glyoxylate metabolism respectively. We also identified a GntR family regulator UgmR that is involved in regulation of uric acid and glyoxylate metabolism. Promoter activity measurement and biochemical assays revealed that the UgmR directly represses the transcriptional activity of PA1513-PA1518 and PA1498-PA1502, and this inhibition was relieved by the addition of uric acid. Importantly, further experiments showed that UgmR also participates in the glyoxylate shunt. Collectively, these findings contribute to a better understanding of the UgmR factor involved in uric acid and glyoxylate metabolism, which provide insights into the complex metabolic pathways in P. aeruginosa.


Subject(s)
Pseudomonas aeruginosa , Uric Acid , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Glyoxylates/metabolism , Metabolic Networks and Pathways/genetics , Promoter Regions, Genetic , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Uric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...