Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 224(12): 2148-2159, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34013337

ABSTRACT

BACKGROUND: Brucella species are Gram-negative intracellular bacteria that causes severe inflammatory diseases in animals and humans. Two major lipoproteins (L19 and L16) of Brucella outer membrane proteins were studied to explore the association with inflammatory response of human monocytes (THP-1). METHODS: Activated THP-1 cells induced with recombinant L19 and L16 were analyzed in comparison with unlipidated forms (U19 and U16) and lipopolysaccharide (LPS) of Brucella melitensis, respectively. RESULTS: Secretion of inflammatory factors tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß was significantly increased from L19, L16, or both stimulated THP-1 cells. High secretion of IL-18 was detected only from L19-induced cells. Signaling of those cytokine responses was identified mainly through the P38-mitogen-activated protein kinase pathway, and signaling of L19-induced IL-1ß response partly occurred via necrosis factor-κB. While exploring different forms of IL-18, we found that L19-induced production of active IL-18 (18 kD) occurred through upregulating NLRP3 and activating caspase-1, whereas L16-induced production of inactive IL-18 fragments (15 kD and 16 kD) occurred through activating caspase-8/3. We also found that L19 upregulated phosphorylation of XIAP for inhibiting caspase-3 activity to cleave IL-18, whereas L16 activated caspase-3 for producing GSDME-N and leading to pyroptosis of THP-1 cells. CONCLUSIONS: Brucella L19 and L16 differentially induce IL-18 response or pyroptosis in THP-1 cells, respectively.


Subject(s)
Brucella/immunology , Inflammation/prevention & control , Interleukin-18 , Lipoproteins , Pyroptosis , Animals , Bacterial Outer Membrane Proteins/genetics , Brucella/genetics , Caspase 3 , Humans , Inflammation/immunology , Inflammation Mediators , Interleukin-1beta , Lipopolysaccharides , Monocytes
2.
Ann Transl Med ; 9(8): 683, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33987381

ABSTRACT

BACKGROUND: Aberrant methylation is common during the early stage of cancer development. This study was designed to investigate DNA methylation as biomarker for breast cancer. METHODS: Public database analysis and methylation-specific whole-gene sequencing were conducted to identify methylated biomarkers that would enable early non-invasive diagnosis of breast cancer. Firstly, the data was obtained from the TCGA Database and the Blueprint Epigenome Database. Secondly, methylation-specific whole-gene sequencing was conducted in 10 female patients with early-stage breast cancer and 10 healthy female volunteers from Nanfang Hospital of Southern Medical University between March 2018 and July 2018. Thirdly, the R language was used for data analysis, and KEGG and DAVID online tool was used for annotations. RESULTS: We found that methylation levels at 13 cytosine-phosphate-guanine (CpG) sites (cg04066177, cg04281344, cg05995576, cg06221609, cg08642731, cg11388802, cg12665414, cg14557216, cg19404723, cg19457909, cg24570211, cg25818763, and cg26215982) in the malignant tissue DNA were highly comparable to those of circulating cell-free DNA (cfDNA) of breast cancer patients, but were significantly different from those of normal tissue DNA, cfDNA of healthy women, and leukocyte DNA. In addition, three CpG sites (cg04281344, cg24570211, and cg26215982) were confirmed in clinical research, which showed that the sensitivity and specificity of these CpGs as biomarkers for breast cancer were 69.4-83.7% and 85.7-88.6%, respectively. CONCLUSIONS: New biomarkers were identified and confirmed for breast cancer by comparing the methylation of tumour tissues, leukocytes, and non-plasma DNA.

SELECTION OF CITATIONS
SEARCH DETAIL
...