Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Redox Biol ; 73: 103176, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38705094

ABSTRACT

Excitotoxicity is a prevalent pathological event in neurodegenerative diseases. The involvement of ferroptosis in the pathogenesis of excitotoxicity remains elusive. Transcriptome analysis has revealed that cytoplasmic reduced nicotinamide adenine dinucleotide phosphate (NADPH) levels are associated with susceptibility to ferroptosis-inducing compounds. Here we show that exogenous NADPH, besides being reductant, interacts with N-myristoyltransferase 2 (NMT2) and upregulates the N-myristoylated ferroptosis suppressor protein 1 (FSP1). NADPH increases membrane-localized FSP1 and strengthens resistance to ferroptosis. Arg-291 of NMT2 is critical for the NADPH-NMT2-FSP1 axis-mediated suppression of ferroptosis. This study suggests that NMT2 plays a pivotal role by bridging NADPH levels and neuronal susceptibility to ferroptosis. We propose a mechanism by which the NADPH regulates N-myristoylation, which has important implications for ferroptosis and disease treatment.

2.
Acta Biomater ; 179: 340-353, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38556136

ABSTRACT

Cellular senescence is a permanent state of cell cycle arrest characterized by increased activity of senescence associated ß-galactosidase (SA-ß-gal). Notably, cancer cells have been also observed to exhibit the senescence response and are being considered for sequential treatment with pro-senescence therapy followed by senolytic therapy. However, there is currently no effective agent targeting ß-galactosidase (ß-Gal) for imaging cellular senescence and monitoring senolysis in cancer therapy. Aggregation-induced emission luminogen (AIEgen) demonstrates strong fluorescence, good photostability, and biocompatibility, making it a potential candidate for imaging cellular senescence and monitoring senolysis in cancer therapy when endowed with ß-Gal-responsive capabilities. In this study, we introduced a ß-Gal-activated AIEgen named QM-ß-gal for cellular senescence imaging and senolysis monitoring in cancer therapy. QM-ß-gal exhibited good amphiphilic properties and formed aggregates that emitted a fluorescence signal upon ß-Gal activation. It showed high specificity towards the activity of ß-Gal in lysosomes and successfully visualized DOX-induced senescent cancer cells with intense fluorescence both in vitro and in vivo. Encouragingly, QM-ß-gal could image senescent cancer cells in vivo for over 14 days with excellent biocompatibility. Moreover, it allowed for the monitoring of senescent cancer cell clearance during senolytic therapy with ABT263. This investigation indicated the potential of the ß-Gal-activated AIEgen, QM-ß-gal, as an in vivo approach for imaging cellular senescence and monitoring senolysis in cancer therapy via highly specific and long-term fluorescence imaging. STATEMENT OF SIGNIFICANCE: This work reported a ß-galactosidase-activated AIEgen called QM-ß-gal, which effectively imaged DOX-induced senescent cancer cells both in vitro and in vivo. QM-ß-gal specifically targeted the increased expression and activity of ß-galactosidase in senescent cancer cells, localized within lysosomes. It was cleared rapidly before activation but maintained stability after activation in the DOX-induced senescent tumor. The AIEgen exhibited a remarkable long-term imaging capability for senescent cancer cells, lasting over 14 days and enabled monitoring of senescent cancer cell clearance through ABT263-induced apoptosis. This approach held promise for researchers seeking to achieve prolonged imaging of senescent cells in vivo.


Subject(s)
Cellular Senescence , beta-Galactosidase , Cellular Senescence/drug effects , beta-Galactosidase/metabolism , Humans , Animals , Neoplasms/diagnostic imaging , Neoplasms/pathology , Neoplasms/drug therapy , Cell Line, Tumor , Mice, Nude , Mice , Doxorubicin/pharmacology , Doxorubicin/chemistry , Optical Imaging/methods
3.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339152

ABSTRACT

Calcium (Ca2+) is a versatile intracellular second messenger that regulates several signaling pathways involved in growth, development, stress tolerance, and immune response in plants. Autoinhibited Ca2+-ATPases (ACAs) play an important role in the regulation of cellular Ca2+ homeostasis. Here, we systematically analyzed the putative OsACA family members in rice, and according to the phylogenetic tree of OsACAs, OsACA9 was clustered into a separated branch in which its homologous gene in Arabidopsis thaliana was reported to be involved in defense response. When the OsACA9 gene was knocked out by CRISPR/Cas9, significant accumulation of reactive oxygen species (ROS) was detected in the mutant lines. Meanwhile, the OsACA9 knock out lines showed enhanced disease resistance to both rice bacterial blight (BB) and bacterial leaf streak (BLS). In addition, compared to the wild-type (WT), the mutant lines displayed an early leaf senescence phenotype, and the agronomy traits of their plant height, panicle length, and grain yield were significantly decreased. Transcriptome analysis by RNA-Seq showed that the differentially expressed genes (DEGs) between WT and the Osaca9 mutant were mainly enriched in basal immune pathways and antibacterial metabolite synthesis pathways. Among them, multiple genes related to rice disease resistance, receptor-like cytoplasmic kinases (RLCKs) and cell wall-associated kinases (WAKs) genes were upregulated. Our results suggest that the Ca2+-ATPase OsACA9 may trigger oxidative burst in response to various pathogens and synergically regulate disease resistance and leaf senescence in rice.


Subject(s)
Disease Resistance , Oryza , Disease Resistance/genetics , Adenosine Triphosphatases/metabolism , Oryza/metabolism , Plant Senescence , Phylogeny , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism
4.
J Mol Cell Biol ; 15(1)2023 06 01.
Article in English | MEDLINE | ID: mdl-36792067

ABSTRACT

Pterygium is a common ocular disease with a high recurrence rate, characterized by hyperplasia of subconjunctival fibrovascular tissue. Autophagy, an important process to maintain cellular homeostasis, participates in the pathogenic fibrosis of different organs. However, the exact role of autophagy in pterygium pathogenesis remains unknown. Here, we found that autophagic activity was decreased in human pterygium tissues compared with adjacent normal conjunctival tissues. The in vitro model of fibrosis was successfully established using human primary conjunctival fibroblasts (ConFB) treated with transforming growth factor-ß1 (TGF-ß1), evidenced by increased fibrotic level and strong proliferative and invasive capabilities. The autophagic activity was suppressed during TGF-ß1- or ultraviolet-induced fibrosis of ConFB. Activating autophagy dramatically retarded the fibrotic progress of ConFB, while blocking autophagy exacerbated this process. Furthermore, SQSTM1, the main cargo receptor of selective autophagy, was found to significantly promote the fibrosis of ConFB through activating the PKCι-NF-κB signaling pathway. Knockdown of SQSTM1, PKCι, or p65 in ConFB delayed TGF-ß1-induced fibrosis. Overexpression of SQSTM1 drastically abrogated the inhibitory effect of rapamycin or serum starvation on TGF-ß1-induced fibrosis. Collectively, our data suggested that autophagy impairment of human ConFB facilitates fibrosis via activating the SQSTM1-PKCι-NF-κB signaling cascades. This work was contributory to elucidating the mechanism of autophagy underlying pterygium occurrence.


Subject(s)
NF-kappa B , Pterygium , Humans , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Pterygium/pathology , Sequestosome-1 Protein/metabolism , Signal Transduction , Fibrosis , Autophagy
5.
Int J Mol Sci ; 23(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36555397

ABSTRACT

Hydrogels with a three-dimensional network structure are particularly outstanding in water absorption and water retention because water exists stably in the interior, making the gel appear elastic and solid. Although traditional hydrogels have good water absorption and high water content, they have poor mechanical properties and are not strong enough to be applied in some scenarios today. The proposal of double-network hydrogels has dramatically improved the toughness and mechanical strength of hydrogels that can adapt to different environments. Based on ensuring the properties of hydrogels, they themselves will not be damaged by excessive pressure and tension. This review introduces preparation methods for double-network hydrogels and ways to improve the mechanical properties of three typical gels. In addition to improving the mechanical properties, the biocompatibility and swelling properties of hydrogels enable them to be applied in the fields of biomedicine, intelligent sensors, and ion adsorption.


Subject(s)
Hydrogels , Water , Hydrogels/chemistry , Adsorption , Water/chemistry
6.
Comput Math Methods Med ; 2022: 9547166, 2022.
Article in English | MEDLINE | ID: mdl-35936378

ABSTRACT

Objective: This study is aimed at analyzing the factors affecting the recurrence patterns and recurrence-free survival (RFS) of high-grade gliomas (HGG). Methods: Eligible patients admitted to the Affiliated Hospital of Xuzhou Medical University were selected. Subsequently, the effects of some clinical data including age, gender, WHO pathological grades, tumor site, tumor size, clinical treatments, and peritumoral edema (PTE) area and molecular markers (Ki-67, MGMT, IDH-1, and p53) on HGG patients' recurrence patterns and RFS were analyzed. Results: A total number of 77 patients were enrolled into this study. After analyzing all the cases, it was determined that tumor size and tumor site had a significant influence on the recurrent patterns of HGG, and PTE was an independent predict factor of recurrence patterns. Specifically, when the PTE was mild (<1 cm), the recurrence pattern tended to be local; in contrast, HGG was more likely to progress to marginal recurrence and distant recurrence. Furthermore, age and PTE were significantly associated with RFS; the median RFS of the population with PTE < 1 cm (23.60 months) was obviously longer than the population with PTE ≥ 1 cm (5.00 months). Conclusions: PTE is an independent predictor of recurrence patterns and RFS for HGG. Therefore, preoperative identification of PTE in HGG patients is crucially important, which is helpful to accurately estimate the recurrence pattern and RFS.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/pathology , Edema , Glioma/pathology , Humans
7.
J Comp Pathol ; 195: 1-6, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35817535

ABSTRACT

A 3-year-old male Bichon Frise developed lethargy, anorexia and haematuria. B-scan ultrasonography examination revealed a small, irregular, soft-textured mass in the bladder. Histopathologically, there was an incomplete fibrous pseudocapsule around the tumour tissue and although there was clear demarcation from the surrounding tissue, there was invasion of the capsule. Tumour cells proliferated in nests or cords of variable size, separated by fibrovascular tissue. The neoplastic cells were immunopositive for chromogranin A, synaptophysin and neuron-specific enolase, and electron microscopy revealed that they contained cytoplasmic secretory granules. On the basis of these findings, the tumour was diagnosed as a primary paraganglioma of the urinary bladder.


Subject(s)
Dog Diseases , Paraganglioma , Urinary Bladder Neoplasms , Animals , Dog Diseases/pathology , Dogs , Male , Paraganglioma/diagnostic imaging , Paraganglioma/pathology , Paraganglioma/veterinary , Ultrasonography , Urinary Bladder/pathology , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/veterinary
8.
Cancer Cell ; 40(6): 674-693.e7, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35594863

ABSTRACT

Despite the unprecedented success of immune checkpoint inhibitors (ICIs) as anti-cancer therapy, it remains a prevailing clinical need to identify additional mechanisms underlying ICI therapeutic efficacy and potential drug resistance. Here, using lineage tracking in cancer patients and tumor-bearing mice, we demonstrate that erythroid progenitor cells lose their developmental potential and switch to the myeloid lineage. Single-cell transcriptome analyses reveal that, notwithstanding quantitative differences in erythroid gene expression, erythroid differentiated myeloid cells (EDMCs) are transcriptionally indistinguishable from their myeloid-originated counterparts. EDMCs possess multifaceted machinery to curtail T cell-mediated anti-tumor responses. Consequently, EDMC content within tumor tissues is negatively associated with T cell inflammation for the majority of solid cancers; moreover, EDMC enrichment, in accordance with anemia manifestation, is predictive of poor prognosis in various cohorts of patients undergoing ICI therapy. Together, our findings reveal a feedforward mechanism by which tumors exploit anemia-triggered erythropoiesis for myeloid transdifferentiation and immunosuppression.


Subject(s)
Anemia , Neoplasms , Anemia/genetics , Anemia/metabolism , Animals , B7-H1 Antigen/metabolism , Erythroid Precursor Cells , Humans , Immunosuppression Therapy , Mice , Myeloid Cells/metabolism , Neoplasms/therapy , Treatment Outcome , Tumor Microenvironment
9.
Cell Death Dis ; 13(1): 37, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013122

ABSTRACT

Age-related cell loss underpins many senescence-associated diseases. Apoptosis of lens epithelial cells (LECs) is the important cellular basis of senile cataract resulted from prolonged exposure to oxidative stress, although the specific mechanisms remain elusive. Our data indicated the concomitance of high autophagy activity, low SQSTM1/p62 protein level and apoptosis in the same LEC from senile cataract patients. Meanwhile, in primary cultured LECs model, more durable autophagy activation and more obvious p62 degradation under oxidative stress were observed in LECs from elder healthy donors, compared with that from young healthy donors. Using autophagy-deficiency HLE-B3 cell line, autophagy adaptor p62 was identified as the critical scaffold protein sustaining the pro-survival signaling PKCι-IKK-NF-κB cascades, which antagonized the pro-apoptotic signaling. Moreover, the pharmacological inhibitor of autophagy, 3-MA, significantly inhibited p62 degradation and rescued oxidative stress-induced apoptosis in elder LECs. Collectively, this study demonstrated that durable activation of autophagy promoted age-related cell death in LECs. Our work contributes to better understanding the pathogenesis of senescence-associated diseases.


Subject(s)
Aging/pathology , Apoptosis/physiology , Autophagy/physiology , Cataract/pathology , Adenine/analogs & derivatives , Adenine/pharmacology , Adult , Aged , Aging/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cataract/metabolism , Cell Survival , Cells, Cultured , Cellular Senescence/drug effects , Cellular Senescence/physiology , Humans , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Middle Aged , NF-kappa B/metabolism , Oxidative Stress/drug effects , Sequestosome-1 Protein/metabolism , Signal Transduction , Young Adult
10.
Ann Transl Med ; 10(23): 1274, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36618787

ABSTRACT

Background: Experimental autoimmune uveitis (EAU) is a widely used animal model for uveitis research. The C57BL/6 mouse strain is the most commonly used mouse strain in the research of genetic modification, but C57BL/6 mice are not sufficiently susceptible to EAU induction, partly due to experimental factors. This work aims to optimize relevant factors to improve the efficiency of EAU induction in C57BL/6 mice. Methods: To induce EAU, mice were immunized via intraperitoneal injection with pertussis (PTX) and subcutaneous injection with interphotoreceptor retinoid-binding protein peptide 1-20 (IRBP1-20) emulsified with complete Freund's adjuvant (CFA). The severity of inflammation was assessed using several approaches. The relevant experimental factors were evaluated, including methods of emulsification and doses of peptide and PTX. Results: Uveitis occurred at 8-12 days after immunization and reached its peak at 18-20 days, while T helper type 17 (Th17) cells peaked earlier at 14-18 days after immunization. Based on clinical and histological scores, 500 µg of IRBP peptide was the optimal dose required to induce EAU. The PTX dose demonstrated no influence on EAU incidence, but potentially affected the severity of uveitis. A single injection of 1,000 ng of PTX induced the most severe EAU and the highest proportion of Th17 cells. Compared to extruded emulsion, sonicated emulsion produced a higher incidence, higher histological score, and a 2-day-earlier onset of EAU. Electron microscopy showed a significantly different microstructure between the 2 emulsions. Conclusions: This work optimized the protocols of EAU induction and obtained a high and stable induction rate with severe inflammation in the C57BL/6 mouse strain. Our results facilitate future experimental research involving uveitis.

11.
Front Cell Dev Biol ; 9: 719262, 2021.
Article in English | MEDLINE | ID: mdl-34722502

ABSTRACT

Background: Pathologic myopia (PM) associated with myopic maculopathy (MM) and "Plus" lesions is a major cause of irreversible visual impairment worldwide. Therefore, we aimed to develop a series of deep learning algorithms and artificial intelligence (AI)-models for automatic PM identification, MM classification, and "Plus" lesion detection based on retinal fundus images. Materials and Methods: Consecutive 37,659 retinal fundus images from 32,419 patients were collected. After excluding 5,649 ungradable images, a total dataset of 32,010 color retinal fundus images was manually graded for training and cross-validation according to the META-PM classification. We also retrospectively recruited 1,000 images from 732 patients from the three other hospitals in Zhejiang Province, serving as the external validation dataset. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, and quadratic-weighted kappa score were calculated to evaluate the classification algorithms. The precision, recall, and F1-score were calculated to evaluate the object detection algorithms. The performance of all the algorithms was compared with the experts' performance. To better understand the algorithms and clarify the direction of optimization, misclassification and visualization heatmap analyses were performed. Results: In five-fold cross-validation, algorithm I achieved robust performance, with accuracy = 97.36% (95% CI: 0.9697, 0.9775), AUC = 0.995 (95% CI: 0.9933, 0.9967), sensitivity = 93.92% (95% CI: 0.9333, 0.9451), and specificity = 98.19% (95% CI: 0.9787, 0.9852). The macro-AUC, accuracy, and quadratic-weighted kappa were 0.979, 96.74% (95% CI: 0.963, 0.9718), and 0.988 (95% CI: 0.986, 0.990) for algorithm II. Algorithm III achieved an accuracy of 0.9703 to 0.9941 for classifying the "Plus" lesions and an F1-score of 0.6855 to 0.8890 for detecting and localizing lesions. The performance metrics in external validation dataset were comparable to those of the experts and were slightly inferior to those of cross-validation. Conclusion: Our algorithms and AI-models were confirmed to achieve robust performance in real-world conditions. The application of our algorithms and AI-models has promise for facilitating clinical diagnosis and healthcare screening for PM on a large scale.

12.
ACS Nano ; 15(7): 12429-12437, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34240611

ABSTRACT

As a kind of biocompatible material with long history, silk fibroin is one of the ideal platforms for on-skin and implantable electronic devices, especially for self-powered systems. In this work, to solve the intrinsic brittleness as well as poor chemical stability of pure silk fibroin film, mesoscopic doping of regenerated silk fibroin is introduced to promote the secondary structure transformation, resulting in huge improvement in mechanical flexibility (∼250% stretchable and 1000 bending cycles) and chemical stability (endure 100 °C and 3-11 pH). Based on such doped silk film (SF), a flexible, stretchable and fully bioabsorbable triboelectric nanogenerator (TENG) is developed to harvest biomechanical energy in vitro or in vivo for intelligent wireless communication, for example, such TENG can be attached on the fingers to intelligently control the electrochromic function of rearview mirrors, in which the transmittance can be easily adjusted by changing contact force or area. This robust TENG shows great potential application in intelligent vehicle, smart home and health care systems.


Subject(s)
Fibroins , Fibroins/chemistry , Electronics , Motion , Biocompatible Materials/chemistry , Silk
13.
Acta Ophthalmol ; 99(7): e1027-e1040, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33665973

ABSTRACT

PURPOSE: To evaluate the influence of 2.2 mm clear corneal incision (CCI) features in surgically induced astigmatism (SIA) and higher-order aberrations (HOAs) after cataract surgery. METHODS: Right eyes of 92 subjects receiving 2.2 mm incision cataract surgery were involved. A total of 38 eyes were categorized as the intact incision group, and 54 eyes were the defective incision group. Pre- and postoperative (1 month and 6 months) corneal astigmatism and HOAs on anterior and posterior corneal surfaces, corneal volume, and corneal thickness (CT) were measured using Pentacam. The CCI features including incision length (IL), incision angles, distance from incision to central cornea (Dis-En/Ex), and CT at incision site were quantified using AS-OCT. RESULTS: The defective incision group showed shorter IL and larger incision angles [false discovery rate (FDR) - p < 0.05]. Changes in CT at incision site were more pronounced for the defective incision group (FDR - p < 0.05). Some SIA parameters were related to the certain specific CCI features, especially IL (FDR - p < 0.05). Both groups exhibited significant increased 6 mm posterior corneal tHOAs at 1 month (Bonferroni corrected - p < 0.01) and the defective incision group showed increased 6 mm posterior tHOAs at 6 months (Bonferroni corrected - p = 0.023). There were characteristic correlations between Zernike terms and CCI features including IL, CT, Dis-En/Ex, and incision angles at 1 month, especially over 6 mm zone. CONCLUSION: The CCI deformities can affect corneal recovery and induce more HOAs at 1 month postoperatively. Such effects became minor, but could persist until 6 months. The IL combined with Angle-En/Ex was important factor influencing CCI integrity and corneal optical quality.


Subject(s)
Astigmatism/etiology , Cataract Extraction/adverse effects , Cornea/diagnostic imaging , Corneal Topography/methods , Postoperative Complications/epidemiology , Refraction, Ocular/physiology , Visual Acuity , Aged , Astigmatism/epidemiology , Astigmatism/physiopathology , China/epidemiology , Cornea/surgery , Female , Follow-Up Studies , Humans , Incidence , Male , Postoperative Complications/etiology , Retrospective Studies
14.
J Basic Microbiol ; 61(5): 430-442, 2021 May.
Article in English | MEDLINE | ID: mdl-33683727

ABSTRACT

The lentivirus-short hairpin RNA (shRNA) system is a widely used tool for RNA interference. Multiple factors may affect the RNA interference efficiency during lentivirus production and transduction procedures. Thus, an optimized protocol is required to achieve high-titer lentivirus and efficient gene delivery. In the present study, lentivirus was produced by transfecting lentiviral transfer and packaging plasmids into HEK 293T cells. The factors affecting lentiviral titer were assessed, including lentiviral plasmid ratio, lentiviral transfer plasmid type, serum type for cell culture, transfection reagent-plasmid mixture incubation time, and the inoculation density of 293T cells for transfection. The high-titer lentivirus was achieved when plasmids were transfected at a molar ratio of 1:1:1:2, and the transfection reagent-plasmid mixture was replaced 6-8 h after transfection. The pLVX-shRNA2 lentiviral transfer plasmid was associated with the highest lentiviral titer, while both pLVX-shRNA2 and psi-LVRU6GP plasmids were associated with efficient RNA interference in target cells. The serum type for 293T cell culture affected the lentiviral titer significantly, while the inoculation density of 293T cells showed no influence on transfection efficiency or lentiviral titer. Moreover, the human primary fibroblasts infected with lentivirus, using the centrifugation method, achieved higher transduction efficiency than those infected with the non-centrifugation method. In conclusion, this study helped optimize lentiviral production and transduction procedures for more efficient gene delivery.


Subject(s)
Fibroblasts/virology , Lentivirus/genetics , Lentivirus/physiology , Transduction, Genetic/methods , Cells, Cultured , HEK293 Cells , Humans , Plasmids/genetics , RNA Interference , Transfection
15.
Ann Transl Med ; 9(3): 226, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33708853

ABSTRACT

BACKGROUND: This study aimed to establish and evaluate an artificial intelligence-based deep learning system (DLS) for automatic detection of diabetic retinopathy. This could be important in developing an advanced tele-screening system for diabetic retinopathy. METHODS: A DLS with a convolutional neural network was developed to recognize fundus images of referable diabetic retinopathy. A total data set of 41,866 color fundus images were obtained from 17 cities in the Yangtze River Delta Urban Agglomeration (YRDUA). Five experienced retinal specialists and 15 ophthalmologists were recruited to verify images. For training, 80% of the data set was used, and the other 20% served as the validation data set. To effectively understand the learning process, the DLS automatically superimposed a heatmap on the original image. The regions utilized by the DLS were highlighted for diagnosis. RESULTS: Using the local validation data set, the DLS achieved an area under the curve of 0.9824. Based on the manual screening criteria, an operating point was set at about 0.9 sensitivity to evaluate the DLS. Specificity was recorded at 0.9609 and sensitivity was 0.9003. The DLSs showed excellent reliability, repeatability, and high efficiency. After analyzing the misclassification, it was found that 88.6% of the false-positives were mild non-proliferative diabetic retinopathy (NPDR) whereas, 81.6% of the false-negatives were intraretinal microvascular abnormalities. CONCLUSIONS: The DLS efficiently detected fundus images from complex sources in the real world. Incorporating DLS technology in tele-screening will advance the current screening programs to offer a cost-effective and time-efficient solution for detecting diabetic retinopathy.

16.
Nanotechnology ; 32(6): 065502, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33086215

ABSTRACT

Catalytic and electrocatalytic applications of supported metal nanoparticles are hindered due to an aggregation of metal nanoparticles and catalytic leaching under harsh operations. Hence, stable and leaching free catalysts with high surface area are extremely desirable but also challenging. Here we report a gold nanoparticles-hosted mesoporous nitrogen doped carbon matrix, which is prepared using bovine serum albumin (BSA) through calcination. BSA plays three roles in this process as a reducing agent, capping agent and carbon precursor, hence the protocol exhibits economic and sustainable. Gold nanoparticles at N-doped BSA carbon (AuNPs@NBSAC)-modified three-electrode strip-based flexible sensor system has been developed, which displayed effective, sensitive and selective for simultaneous detection of uric acid (UA) and dopamine (DA). The AuNPs@NBSAC-modified sensor showed an excellent response toward DA with a linear response throughout the concentration range from 1 to 50 µM and a detection limit of 0.05 µM. It also exhibited an excellent response toward UA, with a wide detection range from 5 to 200 µM as well as a detection limit of 0.1 µM. The findings suggest that the AuNPs@NBSAC nanohybrid reveals promising applications and can be considered as potential electrode materials for development of electrochemical biosensors.

17.
Aging (Albany NY) ; 12(17): 17647-17661, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32920549

ABSTRACT

Gastric cancer (GC) is one of the most commonly occurring cancers, and metabolism-related genes (MRGs) are associated with its development. Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, and we identified 194 MRGs differentially expressed between GC and adjacent nontumor tissues. Through univariate Cox and lasso regression analyses we identified 13 potential prognostic differentially expressed MRGs (PDEMRGs). These PDEMRGs (CKMT2, ME1, GSTA2, ASAH1, GGT5, RDH12, NNMT, POLR1A, ACYP1, GLA, OPLAH, DCK, and POLD3) were used to build a Cox regression risk model to predict the prognosis of GC patients. Further univariate and multivariate Cox regression analyses showed that this model could serve as an independent prognostic parameter. Gene Set Enrichment Analysis showed significant enrichment pathways that could potentially contribute to pathogenesis. This model also revealed the probability of genetic alterations of PDEMRGs. We have thus identified a valuable metabolic model for predicting the prognosis of GC patients. The PDEMRGs in this model reflect the dysregulated metabolic microenvironment of GC and provide useful noninvasive biomarkers.

18.
Biomark Med ; 14(12): 1069-1084, 2020 08.
Article in English | MEDLINE | ID: mdl-32969243

ABSTRACT

Aim: To explore the mechanism of gastric carcinogenesis by mining potential hub genes and to search for promising small-molecular compounds for gastric cancer (GC). Materials & methods: The microarray datasets were downloaded from Gene Expression Omnibus database and the genes and compounds were analyzed by bioinformatics-related tools and software. Results: Six hub genes (MKI67, PLK1, COL1A1, TPX2, COL1A2 and SPP1) related to the prognosis of GC were confirmed to be upregulated in GC and their high expression was correlated with poor overall survival rate in GC patients. In addition, eight candidate compounds with potential anti-GC activity were identified, among which resveratrol was closely correlated with six hub genes. Conclusion: Six hub genes identified in the present study may contribute to a more comprehensive understanding of the mechanism of gastric carcinogenesis and the predicted potential of resveratrol may provide valuable clues for the future development of targeted anti-GC inhibitors.


Subject(s)
Gene Expression Profiling , Genes, Neoplasm , Neoplasm Proteins/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Amiodarone/chemistry , Cell Cycle Proteins/genetics , Clomipramine/chemistry , Collagen Type I/genetics , Databases, Genetic , Datasets as Topic , Gene Expression Regulation, Neoplastic , Humans , Ki-67 Antigen/genetics , Levallorphan/chemistry , Microtubule-Associated Proteins/genetics , Osteopontin/genetics , Piroxicam/chemistry , Procaine/chemistry , Procaine/pharmacology , Procaine/therapeutic use , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Resveratrol/chemistry , Resveratrol/pharmacology , Small Molecule Libraries/therapeutic use , Ursodeoxycholic Acid/chemistry , Vorinostat/chemistry , Polo-Like Kinase 1
19.
Nano Lett ; 20(6): 4330-4336, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32375003

ABSTRACT

Fluorescence-based microarrays are promising diagnostic tools due to their high throughput, small sample volume requirements, and multiplexing capabilities. However, their low fluorescence output has limited their implementation for in vitro diagnostics applications in point-of-care (POC) settings. Here, by integration of a sandwich immunoassay microarray within a plasmonic nanogap cavity, we demonstrate strongly enhanced fluorescence which is critical for readout by inexpensive POC detectors. The immunoassay consists of inkjet-printed antibodies on a polymer brush which is grown on a gold film. Colloidally synthesized silver nanocubes are placed on top and interact with the underlying gold film creating high local electromagnetic field enhancements. By varying the thickness of the brush from 5 to 20 nm, up to a 151-fold increase in fluorescence and 14-fold improvement in the limit-of-detection is observed for the cardiac biomarker B-type natriuretic peptide (BNP) compared to the unenhanced assay, paving the way for a new generation of POC clinical diagnostics.


Subject(s)
Bioprinting , Gold , Immunoassay , Silver , Humans , Nanotechnology , Point-of-Care Testing , Polymers
20.
Am J Cancer Res ; 10(1): 131-147, 2020.
Article in English | MEDLINE | ID: mdl-32064157

ABSTRACT

Epithelial ovarian cancer (EOC) is the most common cause of gynecological cancer death. Recent studies have reported that iron overload could accelerate cancer progression. TFRC is an important participant in intracellular iron transport, and we noticed that it was abnormally overexpressed in EOC; however, its specific role in EOC remained unclear. Therefore, our study aimed to reveal the clinical significance and biological function of TFRC in human EOC. First, we detected dramatically increased TFRC expression in EOC tissues, which was associated with a worse prognosis for patients. Subsequently, we verified that TFRC knockdown significantly inhibited the proliferation and metastasis of EOC cells (SKOV3 and A2780) in vitro and in vivo. More significantly, we demonstrated that TFRC-mediated proliferation and metastasis of EOC cells resulted from its positive regulation of AXIN2 expression. In conclusion, our findings suggest that TFRC accelerates the progression of EOC by promoting cancer cell proliferation and metastasis via upregulation of AXIN2 expression, which highlights its potential as a novel therapeutic target for human EOC.

SELECTION OF CITATIONS
SEARCH DETAIL
...