Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 276(Pt 2): 133798, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992555

ABSTRACT

In this paper, the size-controllable nano­silver particles (AgNPs) were synthesized from walnut green husk polysaccharide, and its cytotoxicity and antibacterial activity were evaluated. Firstly, acidic polysaccharide WGHP2 was extracted from walnut green husk, and then the silver ion in AgNO3 was reduced in WGHP2 aqueous solution using NaBH4, so as to synthesize the nano­silver composite. The nano­silver composite was characterized by transmission electron microscope, Fourier infrared spectroscopy, ultraviolet-visible spectrometer, scanning electron microscope, inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The results show that AgNPs stabilized by WGHP2 are mainly regular spheres with an average particle size distribution of 15.04-19.23 nm. The particle size distribution and morphology of AgNPs changed with the concentration of silver precursor, which is related to the dispersion of silver precursor in polysaccharide aqueous solution and the formation of AgO coordination bond between silver precursor and polysaccharide molecules. These coordination bonds changed the ability of nanoparticles to produce and release Ag+, and thus regulated their antibacterial activity and cytotoxicity, as evidenced by the experimental result of the cytotoxicity of the nano­silver particle against PC12 cells and the bacteriostatic effect on E.coli and S.aureus. Conclusively, WGHP2-Ag has good stability, antibacterial activity and low cytotoxicity.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Juglans , Metal Nanoparticles , Polysaccharides , Silver , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Juglans/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals , Escherichia coli/drug effects , Rats , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , PC12 Cells , Particle Size
2.
J Hazard Mater ; 474: 134844, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38852252

ABSTRACT

With advances in plastic resource utilization technologies, polystyrene (PS) and sulfonated polystyrene (SPS) microplastics continue to be produced and retained in environmental media, potentially posing greater environmental risks. These plastics, due to their different physicochemical properties, may have different environmental impacts when compounded with other pollutants. The objective of this study was to investigate the combined toxic effects of PS and SPS on wheat using cadmium (Cd) as a background contaminant. The results demonstrated that Cd significantly impeded the normal growth of wheat by disrupting root development. Both PS and SPS exhibited hormesis at low concentrations and promoted wheat growth. Under combined toxicity, PS reduced oxidative stress and promoted the uptake of essential metal elements in wheat. Additionally, KEGG pathway analysis revealed that PS facilitated the repair of Cd-induced blockage of the TCA cycle and glutathione metabolism. However, high concentrations of SPS in combined toxicity not only enhanced oxidative stress and interfered with the uptake of essential metal elements, but also exacerbated the blocked TCA cycle and interfered with pyrimidine metabolism. These differences are related to the different stability (Zeta potential, Hydrodynamic particle size) of the two microplastics in the aquatic environment and their ability to carry heavy metal ions, especially Cd. The results of this study provide important insights into understanding the effects of microplastics on crops in the context of Cd contamination and their environmental and food safety implications.


Subject(s)
Cadmium , Oxidative Stress , Polystyrenes , Triticum , Polystyrenes/toxicity , Triticum/drug effects , Triticum/growth & development , Triticum/metabolism , Cadmium/toxicity , Oxidative Stress/drug effects , Microplastics/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Water Pollutants, Chemical/toxicity , Soil Pollutants/toxicity
3.
Mucosal Immunol ; 17(2): 257-271, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340986

ABSTRACT

Chemotherapy and radiotherapy frequently lead to intestinal damage. The mechanisms governing the repair or regeneration of intestinal damage are still not fully elucidated. Intraepithelial lymphocytes (IELs) are the primary immune cells residing in the intestinal epithelial layer. However, whether IELs are involved in intestinal epithelial injury repair remains unclear. Here, we found that IELs rapidly infiltrated the intestinal crypt region and are crucial for the recovery of the intestinal epithelium post-chemotherapy. Interestingly, IELs predominantly promoted intestinal regeneration by modulating the proliferation of transit-amplifying (TA) cells. Mechanistically, the expression of CD160 on IELs allows for interaction with herpes virus entry mediator (HVEM) on the intestinal epithelium, thereby activating downstream nuclear factor kappa (NF-κB) signaling and further promoting intestinal regeneration. Deficiency in either CD160 or HVEM resulted in reduced proliferation of intestinal progenitor cells, impaired intestinal damage repair, and increased mortality following chemotherapy. Remarkably, the adoptive transfer of CD160-sufficient IELs rescued the Rag1 deficient mice from chemotherapy-induced intestinal inflammation. Overall, our study underscores the critical role of IELs in intestinal regeneration and highlights the potential applications of targeting the CD160-HVEM axis for managing intestinal adverse events post-chemotherapy and radiotherapy.


Subject(s)
Intraepithelial Lymphocytes , Receptors, Immunologic , Animals , Mice , Receptors, Immunologic/metabolism , Intraepithelial Lymphocytes/metabolism , Signal Transduction , Intestines , Intestinal Mucosa/metabolism , Regeneration
4.
RSC Adv ; 13(5): 3346-3363, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756416

ABSTRACT

Alangium chinense has been used as a traditional folk medicine for centuries to treat rheumatism, skin diseases, and diabetes by the people of Southeast Asia. However, the bioactive constituents inhibiting COX-2 and cancer cells (HepG2, Caco-2, HeLa) remain unclear. In this study one new (14) along with twenty-four known compounds (1-13, 15-25) were isolated from the fibrous roots of Alangium chinense by chromatographic methods, and identified by NMR, and Gaussian and CD calculation. Compounds 1, 2, 13, 16, 17, 19, 20, 23, and 24 were isolated from this plant for the first time. Their inhibition effects on COX-2 enzyme and cancer cells were evaluated by MTT assay. Compounds 1-4, 13-14, and 16-18 can be used as good inhibitors against COX-2 enzyme, and compounds 1, 13, 14, and 17 were stronger than the positive control (celecoxib). In addition, molecular docking suggested that compounds 13, 17, and 18 belong to ellagic acids and have good inhibition against COX-2 enzyme. While compounds 1, 5, 13 and 21 showed cytotoxicity against HepG2 cells, compounds 2 and 21 showed cytotoxicity against Caco-2 cells, and compound 20 showed cytotoxicity against HeLa cells.

5.
Sci Total Environ ; 857(Pt 1): 159252, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36216054

ABSTRACT

Critical loads (CLs) of atmospheric deposition for nitrogen (N) and sulfur (S) are used to support decision making related to air regulation and land management. Frequently, CLs are calculated using empirical methods, and the certainty of the results depends on accurate representation of underlying ecological processes. Machine learning (ML) models perform well in empirical modeling of processes with non-linear characteristics and significant variable interactions. We used bootstrap ensemble ML methods to develop CL estimates and assess uncertainties of CLs for the growth and survival of 108 tree species in the conterminous United States. We trained ML models to predict tree growth and survival and characterize the relationship between deposition and tree species response. Using four statistical methods, we quantified the uncertainty of CLs in 95 % confidence intervals (CI). At the lower bound of the CL uncertainty estimate, 80 % or more of tree species have been impacted by nitrogen deposition exceeding a CL for tree survival over >50 % of the species range, while at the upper bound the percentage is much lower (<20 % of tree species impacted across >60 % of the species range). Our analysis shows that bootstrap ensemble ML can be effectively used to quantify critical loads and their uncertainties. The range of the uncertainty we calculated is sufficiently large to warrant consideration in management and regulatory decision making with respect to atmospheric deposition.


Subject(s)
Nitrogen , Trees , United States , Nitrogen/analysis , Uncertainty , Sulfur/analysis , Machine Learning
6.
Nat Prod Res ; 37(17): 2824-2829, 2023.
Article in English | MEDLINE | ID: mdl-36301732

ABSTRACT

A new sesquiterpene, 1-carbonyl-2,8-dihydroxy-11-oxabicyclo [4,4,1] germacra- 2(3),4(5),6(7),8(9)-tetraene (1) and four known compounds (3E, 23E)-3-caffeoyl-23-coumaroylhederagenin (2), (3E, 23E)-dicoumaroylhederagenin (3), morettinone (4), 24-ehylcholesta-3,6-dione (5) were isolated from the ethyl acetate layer of the fibrous root of Alangium chinense (Lour.) Harms. The structure of compound 1 was characterized by its 1H-NMR, 13C-NMR, DEPT, HMBC, HSQC spectrums, and the structures of the known compounds were determined by comparison of their spectroscopic data with those reported by the literatures. The obtained compounds were evaluated for their anti-inflammatory against cyclooxygenase (COX-2). Compound 1 has a good inhibitory effect against COX-2 with IC50 20.43 ± 4.72 µM. The compounds 2-5 have inhibitory effect against COX-2 with IC50 49.19 ± 0.76, 23.29 ± 0.99, 47.78 ± 1.33, and 44.44 ± 0.12 µM, respectively.

7.
J Allergy Clin Immunol ; 149(6): 2091-2104, 2022 06.
Article in English | MEDLINE | ID: mdl-34974065

ABSTRACT

BACKGROUND: Group 2 innate lymphoid cells (ILC2s), the innate counterpart of TH2 cells, play a critical role in type 2 immune responses. However, the molecular regulatory mechanisms of ILC2s are still unclear. OBJECTIVE: The aim of this study was to explore the importance of signal transducer and activator of transcription 3 (STAT3) to ILC2 function in allergic lung inflammation. METHODS: Acute and chronic asthma models were established by intranasal administration of the protease allergen papain in VavicreStat3fl/fl, Il5tdtomato-creStat3fl/fl, and RorccreStat3fl/fl mice to verify the necessity of functional STAT3 for ILC2 allergic response. The intrinsic role of STAT3 in regulating ILC2 function was examined by generation of bone marrow chimera mice. The underlying mechanism was studied through confocal imaging, metabolomics analysis, and chromatin immunoprecipitation quantitative PCR. RESULTS: STAT3 is essential for ILC2 effector function and promotes ILC2-driven allergic inflammation in the lung. Mechanistically, the alarmin cytokine IL-33 induces a noncanonical STAT3 phosphorylation at serine 727 in ILC2s, leading to translocation of STAT3 into the mitochondria. Mitochondrial STAT3 further facilitates adenosine triphosphate synthesis to fuel the methionine cycle and generation of S-adenosylmethionine, which supports the epigenetic reprogramming of type 2 cytokines in ILC2s. STAT3 deficiency, inhibition of STAT3 mitochondrial translocation, or blockade of methionine metabolism markedly dampened the ILC2 allergic response and ameliorated allergic lung inflammation. CONCLUSION: The mitochondrial STAT3-methionine metabolism pathway is a key regulator that shapes ILC2 effector function through epigenetic regulation, and the related proteins or metabolites represent potential therapeutic targets for allergic lung inflammation.


Subject(s)
Alveolitis, Extrinsic Allergic , Hypersensitivity , Pneumonia , Pulmonary Eosinophilia , Animals , Cytokines , Epigenesis, Genetic , Immunity, Innate , Interleukin-33 , Lung , Lymphocytes , Methionine , Mice , Mitochondria , STAT3 Transcription Factor
8.
Adv Sci (Weinh) ; 9(6): e2103303, 2022 02.
Article in English | MEDLINE | ID: mdl-35018740

ABSTRACT

Innate lymphoid cells (ILCs) are crucial in orchestrating immunity and maintaining tissue homeostasis in various barrier tissues, but whether ILCs influence immune responses in the urinary tract remains poorly understood. Here, bladder-resident ILCs are comprehensively explored and identified their unique phenotypic and developmental characteristics. Notably, bladder-resident ILCs rapidly respond to uropathogenic Escherichia coli (UPEC) infection. It is found that ILC3 is necessary for early protection against UPEC infection in the bladder. Mechanistically, UPEC infection leads to interleukin (IL)-1ß production in the bladder via a MyD88-dependent pathway, which promotes ILC3 activation. ILC3-expressed IL-17A further recruits neutrophils and controls UPEC infection in the bladder. Together, these results demonstrate a critical role for bladder ILCs in the host defense against UPEC infection.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli Infections/prevention & control , Immunity, Innate/immunology , Urinary Tract Infections/immunology , Urinary Tract Infections/prevention & control , Uropathogenic Escherichia coli/immunology , Animals , Disease Models, Animal , Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Urinary Bladder/immunology
9.
Environ Int ; 158: 106958, 2022 01.
Article in English | MEDLINE | ID: mdl-34710732

ABSTRACT

Aviation emissions from landing and takeoff operations (LTO) can degrade local and regional air quality leading to adverse health outcomes in populations near airports and downwind. In this study we aim to quantify the air quality and health-related impacts from commercial LTO emissions in the continental U.S. for two recent years' inventories, 2011 and 2016. We quantify the LTO-attributable PM2.5, O3, and NO2 concentrations and health outcomes for mortality and multiple morbidity health endpoints. We also quantify the impacts from two scenarios representing a nation-wide implementation of 5% or 50% blends of sustainable alternative jet fuels. We estimate 80 (68-93) and 88 (75-100) PM2.5-attributable and 610 (310-920) and 1,100 (570-1,700) NO2-attributable premature mortalities in 2011 and 2016, respectively. We estimate a net decrease of 28 (14-56) and 54 (27-110) in O3-attributable premature mortalities across the U.S. in 2011 and 2016, respectively due to the large O3 titration effects near the airports. We also find that the asthma exacerbations due to NO2 exposures from LTO emissions increase from 100,000 (2,500-200,000) in 2011 to 170,000 (4,400-340,000) in 2016. Implementing a 5% or 50% blend of sustainable alternative jet fuel in 2016 results in a 1% or 18% reduction, respectively in PM2.5-attributable premature mortalities. Monetizing the value of avoided total premature mortalities, we find that a 50%-blended sustainable alternative jet fuel results in a 19% decrease in PM2.5 damages per ton of fuel burned and a 2% decrease in total damages per ton of fuel burned as compared to damages from traditional jet fuel. We also quantify health impacts by state and find California to be the most impacted by LTO emissions. We find that LTO-attributable PM2.5 and NO2 premature mortalities increase by 10% and 80%, respectively from 2011 to 2016 and that NO2-attributable premature mortalities are responsible for 91% of total LTO-attributable premature mortalities in both 2011 and 2016. And since we find LTO-attributable NO2 to be unaffected by the implementation of sustainable alternative jet fuels, additional approaches focused on NOX reductions in the combustor are needed to mitigate the air quality-related health impacts from LTO emissions.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Aircraft , Airports , Particulate Matter/analysis , Vehicle Emissions/analysis
10.
Cell Metab ; 33(5): 988-1000.e7, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33761313

ABSTRACT

Recent studies in both mice and humans have suggested that gut microbiota could modulate tumor responsiveness to chemo- or immunotherapies. However, the underlying mechanism is not clear yet. Here, we found that gut microbial metabolites, especially butyrate, could promote the efficacy of oxaliplatin by modulating CD8+ T cell function in the tumor microenvironment. Butyrate treatment directly boosted the antitumor cytotoxic CD8+ T cell responses both in vitro and in vivo in an ID2-dependent manner by promoting the IL-12 signaling pathway. In humans, the oxaliplatin responder cancer patients exhibited a higher amount of serum butyrate than did non-responders, which could also increase ID2 expression and function of human CD8+ T cells. Together, our findings suggest that the gut microbial metabolite butyrate could promote antitumor therapeutic efficacy through the ID2-dependent regulation of CD8+ T cell immunity, indicating that gut microbial metabolites could be effective as a part of cancer therapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Inhibitor of Differentiation Protein 2/metabolism , Metabolome , Animals , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/therapeutic use , Butyrates/blood , Butyrates/pharmacology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Humans , Inhibitor of Differentiation Protein 2/deficiency , Inhibitor of Differentiation Protein 2/genetics , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-12/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Male , Metabolome/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/drug therapy , Oxaliplatin/therapeutic use , Signal Transduction/drug effects , Tumor Microenvironment
11.
Lifestyle Genom ; 13(5): 138-145, 2020.
Article in English | MEDLINE | ID: mdl-32882697

ABSTRACT

BACKGROUND/AIMS: Alpinia zerumbet (Pers.) Burtt. et Smith has been used as a flavor additive in food and a traditional medicine for centuries, especially in Guizhou Province, China, and it prolongs people's lives with multiple beneficial effects. Thus, one of the aims of this review was to expound the chemical constituents of this plant, especially its fruits. Since cardiovascular diseases, including atherosclerosis, pose a health threat to humans, another aim was to expound the possible mechanisms of its potential use as an herbal medication for atherosclerosis. METHODS: In this study, 10 reports are cited to expound the potential bioactive compounds. Moreover, 33 reports explain the antihypertensive and antiatherosclerotic effects of the plant by ameliorating inflammation and endothelial dysfunction, increasing vasodilation, improving hyperlipidemia, downgrading the glucose status, and working as an antioxidant. RESULTS: A. zerumbetis rich in terpenes, essential oils, flavonoids, polyphenolics, and sterols. Pharmacological experiments showed that A. zerumbet has antioxidative and anti-inflammatory effects on the NF-κB signaling pathway and can ameliorate oxidative stress in the NOS-NO signaling pathway. Moreover, A. zerumbet demonstrates antihypertensive effects by accelerating vasorelaxant response and increasing 3T3-L1 intracellular cAMP, which has promising antiobesity properties, as well as hypolipidemic and anti-diabetic complication effects. CONCLUSIONS: A. zerumbet has potential functions and applications in the prevention of atherosclerosis, but further studies are required before clinical trials.


Subject(s)
Alpinia/chemistry , Atherosclerosis/drug therapy , Plant Extracts/pharmacology , Plant Preparations , 3T3-L1 Cells , Animals , Anti-Obesity Agents/pharmacology , Antioxidants/pharmacology , Blood Glucose/chemistry , Humans , Hyperlipidemias/drug therapy , Inhibitory Concentration 50 , Kinetics , Male , Medicine, Chinese Traditional , Mesocricetus , Mice , Nitric Oxide Synthase , Oils, Volatile/chemistry , Oxidative Stress/drug effects , Plant Preparations/therapeutic use , Rats , Risk Factors
12.
Front Immunol ; 8: 158, 2017.
Article in English | MEDLINE | ID: mdl-28270814

ABSTRACT

Dendritic cells (DCs) are highly specialized antigen-presenting cells that play crucial roles in innate and adaptive immunity. Previous studies suggested that Toll-like receptor (TLR) agonists could be used as potential adjuvants, as activation of TLRs can boost DC-induced immune responses. TLR2 agonists have been shown to enhance DC-mediated immune responses. However, classical TLR2 agonists such as Pam3CSK4 are not stable enough in vivo, which limits their clinical applications. In this study, a novel structurally stable TLR2 agonist named SUP3 was designed. Functional analysis showed that SUP3 induced much stronger antitumor response than Pam3CSK4 by promoting cytotoxic T lymphocytes activation in vivo. This effect was achieved through the following mechanisms: SUP3 strongly enhanced the ability of antigen cross-presentation by DCs and subsequent T cell activation. SUP3 upregulated the expression of costimulatory molecules on DCs and increased antigen deposition in draining lymph nodes. More interestingly, SUP3 induced less amount of pro-inflammatory cytokine production in vivo compared to other TLR agonists such as lipopolysaccharide. Taken together, SUP3 could serve as a novel promising immune adjuvant in vaccine development and immune modulations.

13.
Environ Sci Technol ; 50(22): 12225-12231, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27801579

ABSTRACT

The spatial distribution of chemical compounds and concentration of reactive mercury (RM), defined as the sum of gaseous oxidized mercury (GOM) and <3 µm particulate bound mercury (PBM), are poorly characterized. The objective of this study was to understand the chemistry, concentration, and spatial and temporal distribution of GOM at adjacent locations (12 km apart) with a difference in elevation of ∼1000 m. Atmospheric GOM measurements were made with passive and active samplers using membranes, and at one location, a Tekran mercury measurement system was used. The chemistry of GOM varied across time and location. On the basis of data collected, chemistry at the low elevation site adjacent to a highway was primarily influenced by pollutants generated by mobile sources (GOM = nitrogen and sulfur-based compounds), and the high elevation site (GOM = halogen-based compounds) was affected by long-range transport in the free troposphere over the marine boundary layer into Nevada. Data collected at these two locations demonstrate that different GOM compounds exist depending on the oxidants present in the air. Measurements of GOM made by the KCl denuder in the Tekran instrument located at the low elevation site were lower than that measured using membranes by 1.7-13 times. Accurate measurements of atmospheric concentrations and chemistry of RM are necessary for proper assessment of environmental impacts, and field measurements are essential for atmospheric models, which in turn influence policy decisions.


Subject(s)
Air Pollutants , Environmental Monitoring/instrumentation , Atmosphere/chemistry , Mercury , Mercury Compounds
14.
Environ Sci Technol ; 49(10): 6102-8, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25877790

ABSTRACT

Quantifying the concentration of gaseous oxidized mercury (GOM) and identifying the chemical compounds in the atmosphere are important for developing accurate local, regional, and global biogeochemical cycles. The major hypothesis driving this work was that relative humidity affects collection of GOM on KCl-coated denuders and nylon membranes, both currently being applied to measure GOM. Using a laboratory manifold system and ambient air, GOM capture efficiency on 3 different collection surfaces, including KCl-coated denuders, nylon membranes, and cation-exchange membranes, was investigated at relative humidity ranging from 25 to 75%. Recovery of permeated HgBr2 on KCl-coated denuders declined by 4-60% during spikes of relative humidity (25 to 75%). When spikes were turned off GOM recoveries returned to 60 ± 19% of permeated levels. In some cases, KCl-coated denuders were gradually passivated over time after additional humidity was applied. In this study, GOM recovery on nylon membranes decreased with high humidity and ozone concentrations. However, additional humidity enhanced GOM recovery on cation-exchange membranes. In addition, reduction and oxidation of elemental mercury during experiments was observed. The findings in this study can help to explain field observations in previous studies.


Subject(s)
Air Pollutants/analysis , Gases/analysis , Membranes, Artificial , Mercury/analysis , Cations , Environmental Monitoring , Humidity , Nylons , Oxidation-Reduction , Ozone , Potassium Chloride
15.
Environ Sci Technol ; 49(1): 432-41, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25485926

ABSTRACT

To understand gaseous oxidized mercury (GOM) sources to the Western US, data were collected with passive samplers for ambient GOM concentrations and dry deposition at 10 sites from the coast of the Pacific Ocean to Great Basin National Park. Tests were done to better understand the samplers and the materials used. Measured dry deposition of GOM was significantly higher at sites >2000 m elevation relative to those below due to high GOM concentrations and atmospheric turbulence. At these high elevation sites, GOM dry deposition was higher in spring due to long-range transport from Asia (air parcels from the free troposphere) and some high GOM dry deposition events were related to regional emissions. Dry deposition of GOM at two sites was calculated using the passive sampler data and a multiple-resistance model. A previously developed relationship between the sampling rate of the passive sampler and GOM concentrations was used to estimate dry deposition and a scaling factor of 3 was used to adjust GOM concentrations, due to underestimation by KCl-coated denuder measurements. With the scaling factor of 3, modeled deposition was in the range of results estimated from two different models settings. However, dry deposition did not correlate consistently with either model. The disagreement could be due to uncertainties associated with measurements and/or modeling, or different GOM compounds existing in the atmosphere. If the atmospheric GOM compounds are known, dry deposition velocities could be estimated more accurately. Lastly, we investigated the potential for use of a new sampling material for GOM and checked the efficiency of the passive sampler.


Subject(s)
Air Pollutants/analysis , Mercury Compounds/analysis , Mercury/analysis , Models, Theoretical , Altitude , Atmosphere , California , Environmental Monitoring/methods , Gases/analysis , Nevada , Oxidation-Reduction , Pacific Ocean , Seasons , Uncertainty
16.
PLoS Pathog ; 10(10): e1004422, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25275585

ABSTRACT

Viruses utilize host factors for their efficient proliferation. By evaluating the inhibitory effects of compounds in our library, we identified inhibitors of cyclophilin A (CypA), a known immunosuppressor with peptidyl-prolyl cis-trans isomerase activity, can significantly attenuate EV71 proliferation. We demonstrated that CypA played an essential role in EV71 entry and that the RNA interference-mediated reduction of endogenous CypA expression led to decreased EV71 multiplication. We further revealed that CypA directly interacted with and modified the conformation of H-I loop of the VP1 protein in EV71 capsid, and thus regulated the uncoating process of EV71 entry step in a pH-dependent manner. Our results aid in the understanding of how host factors influence EV71 life cycle and provide new potential targets for developing antiviral agents against EV71 infection.


Subject(s)
Capsid Proteins/metabolism , Capsid/metabolism , Cyclophilin A/metabolism , Enterovirus A, Human/genetics , Enterovirus A, Human/metabolism , Antiviral Agents/pharmacology , Enterovirus A, Human/drug effects , Humans , Virus Replication/drug effects
18.
Environ Sci Process Impacts ; 16(3): 374-92, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24362622

ABSTRACT

Atmospheric mercury (Hg) temporal and spatial patterns must be measured accurately in order to adequately understand the role of this pathway as it relates to Hg toxicity and exposure of humans and wildlife to Hg. It is also important to understand the distribution of the different chemical forms (elemental, oxidized, or particle bound) and specific compounds in air (e.g., HgCl2, HgBr2, HgO, Hg(NO3)2, and HgSO4). However, the current automated and passive sampling methods of measurement have limitations and artifacts impacting our ability to achieve this task. Both abiotic and biotic systems have been developed to measure the total gaseous Hg and oxidized Hg compounds (concentration and deposition). This study reviews and compares the performance of previously and currently applied passive sampling systems. Computable fluid dynamic modeling was conducted to gain additional understanding of a gaseous oxidized Hg (GOM) passive sampler. Case studies during which passive samplers were used are also presented to demonstrate the ability of passive samplers to capture atmospheric Hg variation. A network using passive samplers would be useful for monitoring global Hg trends due to the limits of the current automated method.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Mercury/analysis , Atmosphere/chemistry , Oxidation-Reduction
19.
Environ Sci Process Impacts ; 15(12): 2321-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24190422

ABSTRACT

Wet deposition is an important atmospheric mercury (Hg) pathway between air and terrestrial ecosystems. It is measured at numerous locations in the United States (U. S.) as part of the Mercury Deposition Network (MDN). The annual Hg wet deposition flux in 2009 at four locations in the northeastern U. S. (MDN sites MD08, VT99, NY20, and NY43) ranged from 6.4 to 13.4 µg per m(2) year which is higher than modeled reactive Hg (RM) dry deposition for this region. The highest ambient RM concentrations were seen at MD08, which is closest to significant anthropogenic sources; however, the volume-weighted mean Hg concentrations in precipitation were similar at these four sites. Mass based scavenging ratios (SC) of RM ranged from 1700 to 4500. Differences in SCs were likely a result of differences in meteorological conditions, the forms of RM in the atmosphere, vertical concentration variations, and measurement uncertainties, including precipitation depth and RM concentrations. RM SCs were higher than those reported for other soluble species. Multiple linear regression suggests that gaseous oxidized Hg is responsible for the majority of the scavenged RM.


Subject(s)
Air Pollutants/analysis , Environmental Pollution/analysis , Gases/analysis , Mercury/analysis , Water Pollutants, Chemical/analysis , Maryland , New York , Vermont
20.
Environ Sci Technol ; 47(13): 7307-16, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23651121

ABSTRACT

The chemical compounds that make up gaseous oxidized mercury (GOM) in the atmosphere, and the reactions responsible for their formation, are not well understood. The limitations and uncertainties associated with the current method applied to measure these compounds, the KCl-coated denuder, are not known due to lack of calibration and testing. This study systematically compared the uptake of specific GOM compounds by KCl-coated denuders with that collected using nylon and cation exchange membranes in the laboratory and field. In addition, a new method for identifying different GOM compounds using thermal desorption is presented. Different GOM compounds (HgCl2, HgBr2, and HgO) were found to have different affinities for the denuder surface and the denuder underestimated each of these compounds. Membranes measured 1.3 to 3.7 times higher GOM than denuders in laboratory and field experiments. Cation exchange membranes had the highest collection efficiency. Thermodesorption profiles for the release of GOM compounds from the nylon membrane were different for HgO versus HgBr2 and HgCl2. Application of the new field method for collection and identification of GOM compounds demonstrated these vary as a function of location and time of year. Understanding the chemistry of GOM across space and time has important implications for those developing policy regarding this environmental contaminant.


Subject(s)
Air Pollutants/analysis , Bromides/analysis , Environmental Monitoring/instrumentation , Mercuric Chloride/analysis , Mercury Compounds/analysis , Oxides/analysis , Adsorption , Cation Exchange Resins/chemistry , Environmental Monitoring/methods , Membranes, Artificial , Nylons/chemistry , Oxidation-Reduction , Potassium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL