Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Viruses ; 16(3)2024 03 14.
Article in English | MEDLINE | ID: mdl-38543818

ABSTRACT

Porcine rotavirus A (PoRVA) is an enteric pathogen capable of causing severe diarrhea in suckling piglets. Investigating the prevalence and molecular characteristics of PoRVA in the world, including China, is of significance for disease prevention. In 2022, a total of 25,768 samples were collected from 230 farms across China, undergoing porcine RVA positivity testing. The results showed that 86.52% of the pig farms tested positive for porcine RVA, with an overall positive rate of 51.15%. Through the genetic evolution analysis of VP7, VP4 and VP6 genes, it was revealed that G9 is the predominant genotype within the VP7 segment, constituting 56.55%. VP4 genotypes were identified as P[13] (42.22%), P[23] (25.56%) and P[7] (22.22%). VP6 exhibited only two genotypes, namely I5 (88.81%) and I1 (11.19%). The prevailing genotype combination for RVA was determined as G9P[23]I5. Additionally, some RVA strains demonstrated significant homology between VP7, VP4 and VP6 genes and human RV strains, indicating the potential for human RV infection in pigs. Based on complete genome sequencing analysis, a special PoRVA strain, CHN/SD/LYXH2/2022/G4P[6]I1, had high homology with human RV strains, revealing genetic reassortment between human and porcine RV strains in vivo. Our data indicate the high prevalence, major genotypes, and cross-species transmission of porcine RVA in China. Therefore, the continuous monitoring of porcine RVA prevalence is essential, providing valuable insights for virus prevention and control, and supporting the development of candidate vaccines against porcine RVA.


Subject(s)
Rotavirus Infections , Rotavirus , Humans , Animals , Swine , Rotavirus/genetics , Phylogeny , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Rotavirus Infections/genetics , Genome, Viral , Genotype
2.
Opt Lett ; 48(13): 3579-3582, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37390185

ABSTRACT

Employing a photosensitive donor/acceptor planar heterojunction (DA-PHJ) with complementary optical absorption as the active layer is one of the key strategies for realizing broad spectral organic photodiodes (BS-OPDs). To achieve superior optoelectronic performance, it is vital to optimize the thickness ratio of the donor layer to acceptor layer (the DA thickness ratio) in addition to the optoelectronic properties of the DA-PHJ materials. In this study, we realized a BS-OPD exploiting tin(II) phthalocyanine (SnPc)/3,4,9,10-perylenete-acarboxylic dianhydride (PTCDA) as the active layer and investigated the effect of the DA thickness ratio on the device performance. The results showed that the DA thickness ratio has a significant impact on the device performance, and an optimized DA thickness ratio of 30:20 was found. Upon the optimization of the DA thickness ratio, improvements of 187% in photoresponsivity and 144% in specific detectivity were achieved on average. Trap-free space-charge-limited photocarrier transport and balanced optical absorption over the wavelength range can be ascribed to the improved performance at the optimized DA thickness ratio. These results establish a solid photophysical foundation for improving the performance of BS-OPDs via thickness ratio optimization.


Subject(s)
Isoindoles , Tin
3.
CNS Neurosci Ther ; 29(6): 1571-1584, 2023 06.
Article in English | MEDLINE | ID: mdl-36924304

ABSTRACT

BACKGROUND: In recent years, the ability of neural stem cells (NSCs) transplantation to treat Parkinson's disease (PD) has attracted attention. However, it is still a challenge to promote the migration of NSCs to the lesion site and their directional differentiation into dopaminergic neurons in PD. C-C motif chemokine ligand 5 (CCL5) and C-C motif chemokine receptor 5 (CCR5) are expressed in the brain and are important regulators of cell migration. It has been reported that ethyl stearate (PubChem CID: 8122) has a protective effect in 6-OHDA-induced PD rats. METHODS: Parkinson's disease rats were injected with 6-hydroxydopamine (6-OHDA) into the right substantia nigra, and striatum followed by 8 µL of an NSC cell suspension containing 100 µM ethyl stearate and 8 × 105 cells in the right striatum. The effect of transplantation NSCs combined with ethyl stearate was assessed by evaluating apomorphine (APO)-induced turning behavior and performance in the pole test. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting (WB), and immunofluorescence staining were also performed. RESULTS: NSCs transplantation combined with ethyl stearate ameliorated the behavioral deficits of PD rats. PD rats that received transplantation NSCs combined with ethyl stearate exhibited increased expression of tyrosine hydroxylase (TH) and an increased number of green fluorescent protein (GFP)-positive cells. Furthermore, GFP-positive cells migrated into the substantia nigra and differentiated into dopaminergic neurons. The expression of CCL5 and CCR5 was significantly increased after transplantation NSCs combined with ethyl stearate. CONCLUSIONS: These findings suggest that NSCs transplantation combined with ethyl stearate can improve the motor behavioral performance of PD rats by promoting NSCs migration from the striatum to the substantia nigra via CCL5/CCR5 and promoting the differentiation of NSCs into dopaminergic neurons.


Subject(s)
Neural Stem Cells , Parkinson Disease , Rats , Animals , Parkinson Disease/therapy , Oxidopamine/toxicity , Rats, Sprague-Dawley , Neural Stem Cells/metabolism , Cell Differentiation , Substantia Nigra , Dopaminergic Neurons/metabolism , Disease Models, Animal
4.
Virol Sin ; 37(5): 646-655, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35961502

ABSTRACT

Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is one of the most devastating diseases in the global pig industry due to its high mortality rate in piglets. Maternal vaccines can effectively enhance the gut-mammary gland-secretory IgA axis to boost lactogenic immunity and passive protection of nursing piglets against PEDV challenge. From 2017 to 2021, we collected 882 diarrhea samples from 303 farms in China to investigate the epidemiology of PEDV. The result showed that about 52.15% (158/303) of the farms were positive for PEDV with an overall detection rate of 63.95% (564/882) of the samples. The S1 fragments of S gene from 104 strains were sequenced for the phylogenetic analysis. A total of 71 PEDV strains (68.27%) sequenced in this study were clustered into the predominant G2c subgroup, while the newly-defined G2d strains (9.62%) were identified in three provinces of China. The NH-TA2020 strain of G2c subgroup was isolated and cultured, and its infection to piglets caused watery diarrhea within 24 â€‹h, indicating its strong pathogenicity. Oral administration of NH-TA2020 strain to pregnant gilts stimulated high levels of IgA antibody in colostrum. The piglets fed by the gilts above were challenged with NH-TA2020 strain or CH-HeB-RY-2020 strain from G2d subgroup, and the clinical symptoms and virus shedding were significantly reduced compared to the mock group. Our findings suggest that G2c subgroup is the predominant branch circulating in China from 2017 to 2021. Oral administration of NH-TA2020 enhances maternal IgA and lactogenic immune responses, which confer protection against the homologous and emerging G2d PEDV strains challenges in neonates.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Diarrhea/epidemiology , Diarrhea/veterinary , Female , Immunoglobulin A , Immunoglobulin A, Secretory/genetics , Phylogeny , Porcine epidemic diarrhea virus/genetics , Pregnancy , Sus scrofa , Swine
5.
Biomed Pharmacother ; 141: 111832, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34153844

ABSTRACT

The pathological characteristics of Parkinson's disease (PD) include dopaminergic neuron damage, specifically disorders caused by dopamine synthesis, in vivo. Plastrum testudinis extract (PTE) and its bioactive ingredient ethyl stearate (PubChem CID: 8122) were reported to be correlated with tyrosine hydroxylase (TH), which is a biomarker of dopaminergic neurons. This suggests that PTE and its small-molecule active ingredient ethyl stearate have potential for development as a therapeutic drug for PD. In this study, we treated 6-hydroxydopamine (6-OHDA)-induced model rats and PC12 cells with PTE. The mechanism of action of PTE and ethyl stearate was investigated by western blotting, bisulfite sequencing PCR (BSP), real-time PCR, immunofluorescence and siRNA transfection. PTE effectively upregulated the TH expression and downregulated the alpha-synuclein expression in both the substantia nigra and the striatum of the midbrain in a PD model rat. The PC12 cell model showed that both PTE and its active monomer ethyl stearate significantly promoted TH expression and blocked alpha-synuclein, agreeing with the in vivo results. BSP showed that PTE and ethyl stearate increased the methylation level of the Snca intron 1 region. These findings suggest that some of the protective effects of PTE on dopaminergic neurons are mediated by ethyl stearate. The mechanism of ethyl stearate may involve disrupting the abnormal aggregation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) with alpha-synuclein by releasing DNMT1, upregulating Snca intron 1 CpG island methylation, and ultimately, reducing the expression of alpha-synuclein.


Subject(s)
Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Dopaminergic Neurons/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease, Secondary/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Tissue Extracts/chemistry , alpha-Synuclein/metabolism , Animals , DNA (Cytosine-5-)-Methyltransferase 1/drug effects , Hydroxydopamines , Male , Mesencephalon/drug effects , Mesencephalon/metabolism , PC12 Cells , Parkinson Disease, Secondary/chemically induced , Rats , Rats, Sprague-Dawley , Stearates/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , alpha-Synuclein/drug effects
6.
J Virol ; 95(13): e0033621, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33853967

ABSTRACT

To replicate efficiently and evade the antiviral immune response of the host, some viruses degrade host mRNA to induce host gene shutoff via encoding shutoff factors. In this study, we found that feline calicivirus (FCV) infection promotes the degradation of endogenous and exogenous mRNAs and induces host gene shutoff, which results in global inhibition of host protein synthesis. Screening assays revealed that proteinase-polymerase (PP) is a most effective factor in reducing mRNA expression. Moreover, PP from differently virulent strains of FCV could induce mRNA degradation. Further, we found that the key sites of the PP protein required for its proteinase activity are also essential for its shutoff activity but also required for viral replication. The mechanism analysis showed that PP mainly targets Pol II-transcribed RNA in a ribosome-, 5' cap-, and 3' poly(A) tail-independent manner. Moreover, purified glutathione S-transferase (GST)-PP fusion protein exhibits RNase activity in vitro in assays using green fluorescent protein (GFP) RNA transcribed in vitro as a substrate in the absence of other viral or cellular proteins. Finally, PP-induced shutoff requires host Xrn1 to complete further RNA degradation. This study provides a newly discovered strategy in which FCV PP protein induces host gene shutoff by promoting the degradation of host mRNAs. IMPORTANCE Virus infection-induced shutoff is the result of targeted or global manipulation of cellular gene expression and leads to efficient viral replication and immune evasion. FCV is a highly contagious pathogen that persistently infects cats. It is unknown how FCV blocks the host immune response and persistently exists in cats. In this study, we found that FCV infection promotes the degradation of host mRNAs and induces host gene shutoff via a common strategy. Further, PP protein for different FCV strains is a key factor that enhances mRNA degradation. An in vitro assay showed that the GST-PP fusion protein possesses RNase activity in the absence of other viral or cellular proteins. This study demonstrates that FCV induces host gene shutoff by promoting the degradation of host mRNAs, thereby introducing a potential mechanism by which FCV infection inhibits the immune response.


Subject(s)
Calicivirus, Feline/growth & development , Immune Evasion/immunology , Peptide Hydrolases/metabolism , RNA Stability/physiology , RNA, Messenger/metabolism , Ribonucleases/metabolism , Animals , Caliciviridae Infections/pathology , Calicivirus, Feline/genetics , Calicivirus, Feline/metabolism , Cats , Cell Line , HEK293 Cells , Humans , Immune Evasion/genetics , Peptide Hydrolases/genetics , Protein Biosynthesis/physiology , RNA Interference , RNA, Small Interfering/genetics , Ribonucleases/genetics , Virus Replication
7.
PLoS Pathog ; 16(10): e1008944, 2020 10.
Article in English | MEDLINE | ID: mdl-33075108

ABSTRACT

Feline calicivirus (FCV) belongs to the Caliciviridae, which comprises small RNA viruses of both medical and veterinary importance. Once infection has occurred, FCV can persist in the cat population, but the molecular mechanism of how it escapes the innate immune response is still unknown. In this study, we found FCV strain 2280 to be relatively resistant to treatment with IFN-ß. FCV 2280 infection inhibited IFN-induced activation of the ISRE (Interferon-stimulated response element) promoter and transcription of ISGs (Interferon-stimulated genes). The mechanistic analysis showed that the expression of IFNAR1, but not IFNAR2, was markedly reduced in FCV 2280-infected cells by inducing the degradation of IFNAR1 mRNA, which inhibited the phosphorylation of downstream adaptors. Further, overexpression of the FCV 2280 nonstructural protein p30, but not p30 of the attenuated strain F9, downregulated the expression of IFNAR1 mRNA. His-p30 fusion proteins were produced in Escherichia coli and purified, and an in vitro digestion assay was performed. The results showed that 2280 His-p30 could directly degrade IFNAR1 RNA but not IFNAR2 RNA. Moreover, the 5'UTR of IFNAR1 mRNA renders it directly susceptible to cleavage by 2280 p30. Next, we constructed two chimeric viruses: rFCV 2280-F9 p30 and rFCV F9-2280 p30. Compared to infection with the parental virus, rFCV 2280-F9 p30 infection displayed attenuated activities in reducing the level of IFNAR1 and inhibiting the phosphorylation of STAT1 and STAT2, whereas rFCV F9-2280 p30 displayed enhanced activities. Animal experiments showed that the virulence of rFCV 2280-F9 p30 infection was attenuated but that the virulence of rFCV F9-2280 p30 was increased compared to that of the parental viruses. Collectively, these data show that FCV 2280 p30 could directly and selectively degrade IFNAR1 mRNA, thus blocking the type I interferon-induced activation of the JAK-STAT signalling pathway, which may contribute to the pathogenesis of FCV infection.


Subject(s)
Antiviral Agents/pharmacology , Caliciviridae Infections/drug therapy , Calicivirus, Feline/pathogenicity , Immunity, Innate/drug effects , Interferon Type I/metabolism , Animals , Caliciviridae Infections/virology , Calicivirus, Feline/drug effects , Calicivirus, Feline/immunology , Cat Diseases/virology , Cats , Interferon Type I/immunology , Interferon-beta/genetics , Viruses/drug effects , Viruses/genetics
8.
Neurosci Lett ; 735: 135239, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32650052

ABSTRACT

In this paper, we report the results of treating cells with an effective small molecule, (+)4-cholesten-3-one (PubChem CID: 91477), which can promote neural stem cell(NSC) differentiation into dopaminergic neurons. This study used rat neural stem cells stimulated with two different concentrations (7.8 µM and 78 µM) of (+)4-cholesten-3-one. Cell phenotypic analysis showed that (+)4-cholesten-3-one induced NSC differentiation into dopaminergic neurons, and the level of tyrosine hydroxylase(TH), which is specific for dopaminergic cells, was significantly increased compared with that of the drug-free control group. Furthermore, in this study, we found that this effect may be related to the transcription factor fork-head box a2 (FoxA2) and ten-eleven translocation 1 (TET1). The expression of TET1 and FoxA2 was upregulated after treatment with (+)4-cholesten-3-one. To verify the relationship between (+)4-cholesten-3-one and these genes, we found that the binding rate of TET1 and FoxA2 increased after the application of (+)4-cholesten-3-one, as confirmed by a coimmunoprecipitation (Co-IP) assay. With a small interfering RNA (siRNA) experiment, we found that only when Tet1 and Foxa2 were not silenced was the mRNA level of Th increased after (+)4-cholesten-3-one treatment. Taken together, these data show that (+)4-cholesten-3-one can promote the differentiation of NSCs into dopaminergic neurons by upregulating the expression of TET1 and FoxA2 and by increasing their binding. Thus, (+)4-cholesten-3-one may help address the application of neural stem cell replacement therapy in neurodegenerative diseases.


Subject(s)
Cell Differentiation/physiology , Cholestenones/pharmacology , Dioxygenases/biosynthesis , Dopaminergic Neurons/metabolism , Hepatocyte Nuclear Factor 3-beta/biosynthesis , Neural Stem Cells/metabolism , Animals , Cell Differentiation/drug effects , Cells, Cultured , Dopaminergic Neurons/drug effects , Female , Neural Stem Cells/drug effects , Pregnancy , Protein Binding/drug effects , Protein Binding/physiology , Rats , Rats, Sprague-Dawley
9.
Vet Microbiol ; 245: 108707, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32456815

ABSTRACT

Feline viral rhinotracheitis is a prevalent disease among cats caused by feline herpesvirus 1 (FHV-1). microRNAs (miRNAs), which serve as important regulatory factors in the host, participate in the regulation of the host innate immune response to virus infection. However, the roles of miRNAs in the FHV-1 life cycle remain unclear. In this study, we found that a new miRNA, miR-101, could suppress FHV-1 replication. FHV-1 infection upregulated the expression level of miR-101 in a cGAS-dependent manner. Furthermore, miR-101 could significantly enhance type I interferon antiviral signaling by targeting suppressor of cytokine signaling 5 (SOCS5), a negative regulator of the JAK-STAT pathway. Likewise, knockdown of cellular SOCS5 also suppressed FHV-1 replication due to the enhancement of IFN-I-induced signaling cascades. Taken together, our data demonstrated a new strategy for miR-101-mediated defense against FHV-1 infection by enhancing IFN-I antiviral signaling and increased the knowledge of miRNAs regulating innate immune signaling pathways.


Subject(s)
Herpesviridae Infections/veterinary , Host-Pathogen Interactions , MicroRNAs/genetics , Suppressor of Cytokine Signaling Proteins/genetics , Varicellovirus/physiology , Virus Replication , Animals , Cats , Cell Line , Herpesviridae Infections/virology , Signal Transduction , Suppressor of Cytokine Signaling Proteins/immunology , Varicellovirus/pathogenicity
10.
Article in English | MEDLINE | ID: mdl-32382312

ABSTRACT

In recent years, stem cells have gained much attention for the treatment of neurodegenerative diseases. However, inducing neural stem cell directionally differentiation is a difficult problem in the treatment of Parkinson's disease (PD) by stem cell therapy. Plastrum Testudinis (PT) can enhance the number of TH-positive neurons in the PD rat brain substantia nigra, but the underlying mechanism has not been clarified. Here, we aimed at further investigating the mechanism by which PT can promote NSC differentiation into dopaminergic neurons. A rat model of PD was used for detecting the effect of PT on the rat brain substantia nigra in vivo. The results showed the expressions of tyrosine hydroxylase (TH) and TET1 enzyme were increased after treatment with PT. Consequently, Plastrum Testudinis extracts (PTEs) were used for inducing NSC differentiation into dopaminergic neurons ex vivo. During differentiation of NSCs induced by PTE, TH expression was increased, with a concomitant increase in both TET1 and FoxA2. Next, we performed coimmunoprecipitation analysis to examine the interaction between TET1 protein and FoxA2 protein. Our results show that PTE can increase the binding rate of TET1 and FoxA2. Thus, our findings show that PTE can increase the efficiency of NSCs to directionally differentiate into dopaminergic neurons and provide experimental evidence for PT in the treatment of Parkinson's disease.

11.
Vet Microbiol ; 240: 108543, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31902487

ABSTRACT

Since 2011, to control the spread of pseudorabies (PR), US7/US8/UL23-deleted recombinant PRV (rPRV) vaccines based on current variants have been developed. The vaccines can provide effective immune protection to pigs, but fur-bearing animals, such as dogs, foxes, and minks, are increasingly infected by PRV due to consuming contaminated raw meat or offal from immunized pigs. It is suspected that the attenuated PRV vaccine strain is not safe for these fur-bearing animals. To confirm this, we construct a US7/US8/UL23-deleted and a US7/US8/UL23/US3-deleted rPRV based on PRV GL isolated from fox using the CRISPR/Cas9 method. Growth kinetics in vitro and pathogenicity in dogs were compared between the wild type and both rPRVs. The results showed that the growth kinetics of wild-type PRV and US7/US8/UL23-deleted rPRV were faster than those of US7/US8/UL23/US3-deleted recombinant PRV from 24 h to 48 h post infection. Moreover, PRV GL- and rPRVdelUS7/US8/UL23-infected cells formed cell-cell fusion, but the rPRVdelUS7/US8/UL23/US3-infected cells did not. Dogs challenged with wild-type PRV or US7/US8/UL23-deleted rPRV showed obvious nervous symptoms, and all the dogs died, but the group challenged with the US7/US8/UL23/US3-deleted rPRV did not show any nervous symptoms, and all the dogs survived for the duration of the experiment. Tissue viral load analyses also showed that the virulence of the US7/US8/UL23/US3-deleted rPRV was significantly reduced in dogs. This study provides evidence that the US7/US8/UL23-deleted rPRV variant still exhibits high virulence for dogs and also highlights the role of the US3 gene in the pathogenicity of PRV in dogs and provides a strategy for developing a safer vaccine.


Subject(s)
Gene Deletion , Herpesvirus 1, Suid/genetics , Herpesvirus 1, Suid/pathogenicity , Pseudorabies/virology , Rabies Vaccines/immunology , Viral Proteins/genetics , Animals , Antibodies, Viral/blood , CRISPR-Cas Systems , Dogs , Herpesvirus 1, Suid/growth & development , Pseudorabies/immunology , Rabies Vaccines/administration & dosage , Rabies Vaccines/genetics , Vaccination , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Envelope Proteins/genetics , Virulence
12.
Viruses ; 12(1)2019 12 18.
Article in English | MEDLINE | ID: mdl-31861450

ABSTRACT

In response to viral infection, host cells activate various antiviral responses to inhibit virus replication. While feline herpesvirus 1 (FHV-1) manipulates the host early innate immune response in many different ways, the host could activate the antiviral response to counteract it through some unknown mechanisms. MicroRNAs (miRNAs) which serve as a class of regulatory factors in the host, participate in the regulation of the host innate immune response against virus infection. In this study, we found that the expression levels of miR-26a were significantly upregulated upon FHV-1 infection. Furthermore, FHV-1 infection induced the expression of miR-26a via a cGAS-dependent pathway, and knockdown of cellular cGAS significantly blocked the expression of miR-26a induced by poly (dA:dT) or FHV-1 infection. Next, we investigated the biological function of miR-26a during viral infection. miR-26a was able to increase the phosphorylation of STAT1 and promote type I IFN signaling, thus inhibiting viral replication. The mechanism study showed that miR-26a directly targeted host SOCS5. Knockdown of SOCS5 increased the phosphorylation of STAT1 and enhanced the type I IFN-mediated antiviral response, and overexpression of suppressor of the cytokine signalling 5 (SOCS5) decreased the phosphorylation of STAT1 and inhibited the type I IFN-mediated antiviral response. Meanwhile, with the knockdown of SOCS5, the upregulated expression of phosphorylated STAT1 and the anti-virus effect induced by miR-26a were significantly inhibited. Taken together, our data demonstrated a new strategy of host miRNAs against FHV-1 infection by enhancing IFN antiviral signaling.


Subject(s)
Gene Expression Regulation , Interferon Type I/metabolism , MicroRNAs/genetics , Signal Transduction , Suppressor of Cytokine Signaling Proteins/genetics , Varicellovirus/physiology , Virus Replication/genetics , 3' Untranslated Regions , Animals , Cat Diseases/genetics , Cat Diseases/metabolism , Cat Diseases/virology , Cats , Cell Line , Cells, Cultured , Herpesviridae Infections/veterinary , Host-Pathogen Interactions/genetics , Humans , Interferon Type I/biosynthesis , Janus Kinases/metabolism , Nucleotidyltransferases/metabolism , RNA Interference , STAT Transcription Factors/metabolism
13.
Viruses ; 12(1)2019 12 30.
Article in English | MEDLINE | ID: mdl-31905881

ABSTRACT

Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in cats. The type I interferon (type I IFN)-mediated immune responses provide host protection from infectious diseases. Several coronaviruses have been reported to evolve diverse strategies to evade host IFN response. However, whether feline infectious peritonitis virus (FIPV) antagonizes the type I IFN signaling remains unclear. In this study, we demonstrated that FIPV strain DF2 infection not only failed to induce interferon-ß (IFN-ß) and interferon-stimulated gene (ISG) production, but also inhibited Sendai virus (SEV) or polyinosinic-polycytidylic acid (poly(I:C))-induced IFN-ß production. Subsequently, we found that one of the non-structural proteins encoded by the FIPV genome, nsp5, interrupted type I IFN signaling in a protease-dependent manner by cleaving the nuclear factor κB (NF-κB) essential modulator (NEMO) at three sites-glutamine132 (Q132), Q205, and Q231. Further investigation revealed that the cleavage products of NEMO lost the ability to activate the IFN-ß promoter. Mechanistically, the nsp5-mediated NEMO cleavage disrupted the recruitment of the TRAF family member-associated NF-κB activator (TANK) to NEMO, which reduced the phosphorylation of interferon regulatory factor 3 (IRF3), leading to the inhibition of type I IFN production. Our research provides new insights into the mechanism for FIPV to counteract host innate immune response.


Subject(s)
Coronavirus Infections/immunology , Coronavirus, Feline/physiology , Cysteine Endopeptidases/metabolism , I-kappa B Kinase/metabolism , Interferon Type I/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Animals , Cats , Cell Line , Coronavirus 3C Proteases , Coronavirus, Feline/metabolism , Cysteine Endopeptidases/genetics , I-kappa B Kinase/genetics , Immune Evasion , Immunity, Innate , Interferon Regulatory Factor-3 , Interferon Type I/metabolism , Interferon-beta/antagonists & inhibitors , Interferon-beta/genetics , Interferon-beta/metabolism , Mutation , NF-kappa B/metabolism , Promoter Regions, Genetic , Signal Transduction , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...