Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
World J Gastrointest Oncol ; 15(3): 546-561, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-37009318

ABSTRACT

BACKGROUND: Mitophagy plays essential role in the development and progression of colorectal cancer (CRC). However, the effect of mitophagy-related genes in CRC remains largely unknown. AIM: To develop a mitophagy-related gene signature to predict the survival, immune infiltration and chemotherapy response of CRC patients. METHODS: Non-negative matrix factorization was used to cluster CRC patients from Gene Expression Omnibus database (GSE39582, GSE17536, and GSE37892) based on mitophagy-related gene expression. The CIBERSORT method was applied for the evaluation of the relative infiltration levels of immune cell types. The performance signature in predicting chemotherapeutic sensitivity was generated using data from the Genomics of Drug Sensitivity in Cancer database. RESULTS: Three clusters with different clinicopathological features and prognosis were identified. Higher enrichment of activated B cells and CD4+ T cells were observed in cluster III patients with the most favorable prognosis. Next, a risk model based on mitophagy-related genes was developed. Patients in training and validation sets were categorized into low-risk and high-risk subgroups. Low risk patients showed significantly better prognosis, higher enrichment of immune activating cells and greater response to chemotherapy (oxaliplatin, irinotecan, and 5-fluorouracil) compared to high-risk patients. Further experiments identified CXCL3 as novel regulator of cell proliferation and mitophagy. CONCLUSION: We revealed the biological roles of mitophagy-related genes in the immune infiltration, and its ability to predict patients' prognosis and response to chemotherapy in CRC. These interesting findings would provide new insight into the therapeutic management of CRC patients.

2.
RSC Adv ; 11(32): 19406-19416, 2021 May 27.
Article in English | MEDLINE | ID: mdl-35479235

ABSTRACT

Developing a low-cost, simple, and efficient method to prepare excellent bifunctional electrocatalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical in rechargeable zinc-air batteries. Non-stoichiometric M0.85Se (M = Ni or Co) nanoparticles are synthesized and modified on nitrogen-doped hollow carbon sphere (NHCS). The NHCS loaded Ni0.85Se (Ni0.85Se-NHCS) with rich Ni3+ presents higher OER activity, whereas the NHCS-loaded Co0.85Se (Co0.85Se-NHCS) with abundant Co2+ displays better ORR activity, respectively. When Co0.85Se-NHCS is mixed with Ni0.85Se-NHCS in a mass ratio of 1 : 1, the resulting mixture (Ni0.85Se/Co0.85Se-NHCS-2) shows better ORR and OER dual catalytic functions than a single selenide. Moreover, zinc-air batteries equipped with Ni0.85Se/Co0.85Se-NHCS-2 as the oxygen electrode catalyst exhibit excellent charge and discharge performance as well as improved stability over precious metals. This work has developed a simple and effective method to prepare excellent bifunctional electrocatalysts for ORR and OER, which is beneficial for the practical large-scale application of zinc-air batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...