Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Orthop Surg ; 16(4): 864-872, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38384169

ABSTRACT

OBJECTIVE: Knee kinematic asymmetries after anterior cruciate ligament reconstruction (ACLR) are correlated with poor clinical outcomes, such as the progression of knee cartilage degenerations or reinjuries. Fast walking in patients with knee conditions may exacerbate knee kinematic asymmetries, but its impact on ACLR patients is uncertain. The aim of this study is to investigate if fast walking induces more knee kinematic asymmetries in unilateral ACLR patients. METHODS: This cross-sectional study enrolled 55 patients with unilateral ACLR from January 2020 to July 2022. There were 48 males and seven females with an average age of 30.6 ± 6.4 years. Knee kinematic data were collected at three walking speeds: self-selected, fast (150% normal), and slow (50% normal). A 3D knee kinematic analysis system measured the data, and self-reported outcomes assessed comfort levels during walking. We used SPM1D for two-way repeated ANOVA and posthoc paired t-tests to analyze kinematic differences in groups. RESULTS: In fast walking, ACLR knees exhibited more transverse kinematic asymmetries than intact knees, including greater external rotation angle (1.8°, 38%-43%; gait cycle [GC], p < 0.05 & 1.8-2.7°, 50%-61% GC, p < 0.05) and increased proximal tibial translation (2.1-2.5 mm, 2%-6% GC, p < 0.05 & 2.5-3.2 mm, 92%-96% GC, p < 0.05). Additionally, ACLR knees showed greater posterior tibial translation than intact knees (3.6-3.7 mm, 7%-8% GC, p < 0.05) during fast walking. No posterior tibial translation asymmetries were observed in slow walking compared to normal walking levels. ACLR knees have the most comfortable feelings in slow walking speed, and the most uncomfortable feelings in fast walking speed levels (29%). CONCLUSIONS: Fast walking induces additional external tibial rotation and proximal and posterior tibial translation asymmetries in ACLR patients. This raises concerns about long-term safety and health during fast walking. Fast walking, not self-selected speed, is beneficial for identifying postoperative gait asymmetries in ACLR patients.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Adult , Female , Humans , Male , Anterior Cruciate Ligament Injuries/surgery , Biomechanical Phenomena , Cross-Sectional Studies , Gait , Knee Joint/surgery , Walking
2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 32(7): 959-967, 2018 07 15.
Article in Chinese | MEDLINE | ID: mdl-30129324

ABSTRACT

Objective: To investigate the mechanical properties of the novel compound calcium phosphate cement (CPC) biological material as well as the biological activity and osteogenesis effects of induced pluripotent stem cells (iPS) seeding on scaffold and compare their bone regeneration efficacy in cranial defects in rats. Methods: Ac- cording to the different scaffold materials, the experiment was divided into 4 groups: pure CPC scaffold group (group A), CPC∶10% wt chitosan as 2∶1 ratio mixed scaffold group (group B), CPC∶10% wt chitosan∶whisker as 2∶1∶1 ratio mixed scaffold group (group C), and CPC∶10% wt chitosan∶whisker as 2∶1∶2 ratio mixed scaffold group (group D). Mechanical properties (bending strength, work-of-fracture, hardness, and modulus of elasticity) of each scaffold were detected. The scaffolds were cultured with fifth generation iPS-mesenchymal stem cells (MSCs), and the absorbance ( A) values of each group were detected at 1, 3, 7, and 14 days by cell counting kit 8 (CCK-8) method; the alkaline phosphatase (ALP) activity, Live/Dead fluorescence staining and quantitative detection, ALP, Runx2, collagen typeⅠ, osteocalcin (OC), and bone morphogenetic protein 2 (BMP-2) gene expressions by RT-PCR were detected at 1, 7, and 14 days; and the alizarin red staining were detected at 1, 7, 14, and 21 days. Twenty-four 3-month-old male Sprague Dawley rats were used to establish the 8 mm-long skull bone defect model, and were randomly divided into 4 groups ( n=6); 4 kinds of scaffold materials were implanted respectively. After 8 weeks, HE staining was used to observe the repair of bone defects and to detect the percentage of new bone volume and the density of neovascularization. Results: The bending strength, work-of-fracture, hardness, and modulus of elasticity in groups B, C, and D were significantly higher than those in group A, and in groups C, D than in group B, and in group D than in group C ( P<0.05). CCK-8 assay showed that cell activity gradually increased with the increase of culture time, the A values in groups B, C, and D at 3, 7, 14 days were signifiantly higher than those in group A, and in groups C, D than in group B ( P<0.05), but no significant difference was found between groups C and D ( P>0.05). Live/Dead fluorescence staining showed that the proportion of living cells in groups B, C, and D at 7 and 14 days was significantly higher than that in group A ( P<0.05), and in groups C, D at 7 days than in group B ( P<0.05); but no significant difference was found between groups C and D ( P>0.05). RT-PCR showed that the relative expressions of genes in groups B, C, and D at 7 and 14 days were significantly higher than those in group A, and in groups C, D than in group B ( P<0.05); but no significant difference was found between groups C and D ( P>0.05). Alizarin red staining showed that the red calcium deposition on the surface of scaffolds gradually deepened and thickened with the prolongation of culture time; the A values in groups B, C, and D at 14 and 21 days were significantly higher than those in group A ( P<0.05), and in groups C and D than in group B ( P<0.05), but no significant difference was found between groups C and D ( P>0.05). In vivo repair experiments in animals showed that the new bone in each group was mainly filled with the space of scaffold material. Osteoblasts and neovascularization were surrounded by new bone tissue in the matrix, and osteoblasts were arranged on the new bone boundary. The new bone in groups B, C, and D increased significantly when compared with group A, and the new bone in groups C and D was significantly higher than that in group B. The percentage of new bone volume and the density of neovascularization in groups B, C, and D were significantly higher than those in group A, and in groups C and D than in group B ( P<0.05); but no significant difference was found between groups C and D ( P>0.05). Conclusion: The mechanical properties of the new reinforced composite scaffold made from composite chitosan, whisker, and CPC are obviously better than that of pure CPC scaffold material, which can meet the mechanical properties of cortical bone and cancellous bone. iPS-MSCs is attaching and proliferating on the new reinforced composite scaffold material, and the repair effect of bone tissue is good. It can meet the biological and osteogenic activity requirements of the implant materials in the bone defect repair.


Subject(s)
Biocompatible Materials , Chitosan , Induced Pluripotent Stem Cells , Osteogenesis , Tissue Engineering , Animals , Calcium Phosphates , Cell Differentiation , Cells, Cultured , Male , Rats , Rats, Sprague-Dawley , Tissue Scaffolds , Vibrissae
3.
Int J Nanomedicine ; 7: 4199-206, 2012.
Article in English | MEDLINE | ID: mdl-22904629

ABSTRACT

The aim of this study was to explore whether single-wall carbon nanotubes (SWCNTs) can be used as artery tissue-engineering materials by promoting vascular adventitial fibroblasts (VAFs) to transform into myofibroblasts (MFs) and to find the signal pathway involved in this process. VAFs were primary cultured and incubated with various doses of SWCNTs suspension (0, 0.8, 3.2, 12.5, 50, and 200 µg/mL). In the present study, we used three methods (MTT, WST-1, and WST-8) at the same time to detect the cell viability and immunofluorescence probe technology to investigate the effects of oxidative injury after VAFs incubated with SWCNTs. Immunocytochemical staining was used to detect SM(22)-α expression to confirm whether VAFs transformed into MFs. The protein levels were detected by western blotting. The results of immunocytochemical staining showed that SM(22)-α was expressed after incubation with 50 µg/mL SWCNTs for 96 hours, but with oxidative damage. The mRNA and protein levels of SM(22)-α, C-Jun N-terminal kinase, TGF-ß(1), and TGF-ß receptor II in VAFs increased with the dose of SWCNTs. The expression of the p-Smad2/3 protein was upregulated while the Smad7 protein was significantly down-regulated. Smad4 was translocated to the nucleus to regulate SM(22)-α gene expression. In conclusion, SWCNTs promoted VAFs to transform into MFs with SM(22)-α expression by the C-Jun N-terminal kinase/Smads signal pathway at the early stage (48 hours) but weakened quickly. SWCNTs also promoted the transformation by the TGF-ß(l)/Smads signal pathway at the advanced stage in a persistent manner. These results indicate that SWCNTs can possibly be used as artery tissue-engineering materials.


Subject(s)
Adventitia/drug effects , Cell Differentiation/drug effects , Fibroblasts/drug effects , Microfilament Proteins/biosynthesis , Muscle Proteins/biosynthesis , Myofibroblasts/drug effects , Nanotubes, Carbon/chemistry , Adventitia/cytology , Adventitia/metabolism , Animals , Cell Membrane/drug effects , Cell Survival/drug effects , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , MAP Kinase Signaling System/drug effects , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Myofibroblasts/cytology , Myofibroblasts/metabolism , Oxidative Stress/drug effects , Rats , Tissue Engineering
4.
Int J Biochem Cell Biol ; 43(4): 564-72, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21172451

ABSTRACT

The use of nano-sized materials offers exciting new options in technical and medical applications. Single-walled carbon nanotubes are emerging as technologically important in different industries. However, adverse effects on cells have been reported and this may limit their use. We previously found that 200µg/mL of single-walled carbon nanotubes induce apoptosis in rat aorta endothelial cells. The current study aimed to determine the signaling pathway involved in this process. We found that reactive oxygen species generation was involved in activation of the mitochondria-dependent apoptotic pathway. The finding of apoptosis was supported by a number of morphological and biochemical hallmarks, including chromatin condensation, internucleosomal DNA fragmentation, and caspase-3 activation. In conclusion, our results demonstrate that single-walled carbon nanotubes induce apoptosis in rat aorta endothelial cells and that reactive oxygen species are involved in the mitochondrial pathway.


Subject(s)
Aorta/cytology , Apoptosis/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Mitochondria/drug effects , Nanotubes, Carbon , Reactive Oxygen Species/metabolism , Animals , Annexin A5/metabolism , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Endothelial Cells/metabolism , Glutathione/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Rats , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...