Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 20(1): 76, 2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36935511

ABSTRACT

Alzheimer's disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle (NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory microglia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterioration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to provide a new direction for exploring the neuroinflammation activity in AD.


Subject(s)
Alzheimer Disease , Exercise , Neurodegenerative Diseases , Animals , Inflammasomes/metabolism , Inflammation/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neurofibrillary Tangles/metabolism , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans
2.
J Cachexia Sarcopenia Muscle ; 14(1): 356-368, 2023 02.
Article in English | MEDLINE | ID: mdl-36457259

ABSTRACT

BACKGROUND: Exercise is an affordable and practical strategy to alleviate several detrimental outcomes from the aging process, including sarcopenia. The elucidation of molecular mechanisms to alleviate sarcopenia is one of the most important steps towards understanding human aging. Although microRNAs (miRNAs) regulate muscle growth, regeneration and aging, the potential role of exercise-mediated miRNAs during the prevention and rehabilitation of skeletal muscle atrophy upon exercise interventions remains unclear. METHODS: A miRNA profile by miRNA sequencing for gastrocnemius muscle of a 24-month-old aged male rat model mimicking the naturally aging process was established through screening the differentially expressed miRNAs (DEMs) for alleviating aging-induced skeletal muscle atrophy upon optimal exercise intervention. The screened miRNAs and hub genes, as well as biomarkers with the most significantly enriched pathways, were validated by quantitative real-time polymerase chain reaction and western blotting. RESULTS: The sarcopenia index (SI) value and cross-sectional area (CSA) of rats from the old control (OC) group significantly decreased when compared with the youth control (YC) group (P < 0.001, P < 0.01), whereas an increased SI value and an enlarged CSA of rats from the old-aerobic exercise (OE), old-resistance exercise (OR) and old-mixed exercise (OM) groups were determined (P < 0.01, P < 0.001, P < 0.05; P < 0.01, P < 0.01, P < 0.05). Our results demonstrate that 764 known miRNAs, 201 novel miRNAs and 505 miRNA-mRNA interaction networks were identified to be related to aging-induced muscular atrophy. Among them, 13 miRNAs were differentially expressed (P < 0.05 and log2 |fold change| > 1) between the YC group and the OC group. Compared with the OC group, 7, 2 and 11 miRNAs were differentially expressed in the OE, OR and OM groups after exercise interventions, respectively. Meanwhile, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the identified DEMs were primarily related to apoptosis, autophagy and the NF-κB/MuRF1 signalling pathways (P < 0.05). Meanwhile, four DEMs (miR-7a-1-3p, miR-135a-5p, miR-151-5p and miR-196b-5p), six hub genes (Ar, Igf1, Hif1a, Bdnf, Fak and Nras) and several biomarkers (LC3, Beclin1, p62, Bax, Bcl-2 and NF-κB/MuRF1) with the most significantly enriched pathways were confirmed, which may play a key role in muscular atrophy during the aging process. CONCLUSIONS: These findings are closely correlated with the progression of sarcopenia and could act as potential biomarkers for the diagnosis and interventional monitoring of aging-induced skeletal muscle atrophy.


Subject(s)
MicroRNAs , Physical Conditioning, Animal , Sarcopenia , Animals , Male , Rats , Aging/genetics , Aging/metabolism , Biomarkers/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/therapy , Muscular Atrophy/metabolism , NF-kappa B/metabolism , Sarcopenia/genetics , Sarcopenia/therapy , Sarcopenia/metabolism
3.
Front Physiol ; 13: 930185, 2022.
Article in English | MEDLINE | ID: mdl-35910582

ABSTRACT

Background: Exercise is one of the most effective interventions for preventing and treating skeletal muscle aging. Exercise-induced autophagy is widely acknowledged to regulate skeletal muscle mass and delay skeletal muscle aging. However, the mechanisms underlying of the effect of different exercises on autophagy in aging skeletal muscle remain unclear. Methods: A systematic review was performed following an electronic search of SCOPUS, PubMed, Web of Science, ScienceDirect, and Google Scholar and two Chinese electronic databases, CNKI and Wan Fang. All articles published in English and Chinese between January 2010 and January 2022 that quantified autophagy-related proteins in aging skeletal muscle models. Results: The primary outcome was autophagy assessment, indicated by changes in the levels of any autophagy-associated proteins. A total of fifteen studies were included in the final review. Chronic exercise modes mainly comprise aerobic exercise and resistance exercise, and the intervention types include treadmill training, voluntary wheel running, and ladder training. LC3, Atg5-Atg7/9/12, mTOR, Beclin1, Bcl-2, p62, PGC-1α, and other protein levels were quantified, and the results showed that long-term aerobic exercise and resistance exercise could increase the expression of autophagy-related proteins in aging skeletal muscle (p < 0.05). However, there was no significant difference in short term or high-intensity chronic exercise, and different types and intensities of exercise yielded different levels of significance for autophagy-related protein expression. Conclusion: Existing evidence reveals that high-intensity exercise may induce excessive autophagy, while low-intensity exercise for a short period (Intervention duration <12 weeks, frequency <3 times/week) may not reach the threshold for exercise-induced autophagy. Precise control of the exercise dose is essential in the long term to maximize the benefits of exercise. Further investigation is warranted to explore the relationship between chronic exercise and different exercise duration and types to substantiate the delaying of skeletal muscle aging by exercise.

4.
Nutrients ; 14(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35745162

ABSTRACT

Obesity is an important public health problem nowadays. Long-term obesity can trigger a series of chronic diseases and impair the learning and memory function of the brain. Current studies show that scientific exercise can effectively improve learning and memory capacity, which also can provide benefits for obese people. However, the underlying mechanisms for the improvement of cognitive capacity under the status of obesity still need to be further explored. In the present study, the obesity-induced cognition-declined model was established using 4-week-old mice continuously fed with a high-fat diet (HFD) for 12 weeks, and then the model mice were subjected to an 8-week swimming intervention and corresponding evaluation of relevant indicators, including cognitive capacity, inflammation, insulin signal pathway, brain-derived neurotrophic factor (BNDF), and apoptosis, for exploring potential regulatory mechanisms. Compared with the mice fed with regular diets, the obese mice revealed the impairment of cognitive capacity; in contrast, swimming intervention ameliorated the decline in cognitive capacity of obese mice by reducing inflammatory factors, inhibiting the JNK/IRS-1/PI3K/Akt signal pathway, and activating the PGC-1α/BDNF signal pathway, thereby suppressing the apoptosis of neurons. Therefore, swimming may be an important interventional strategy to compensate for obesity-induced cognitive impairment.


Subject(s)
Cognitive Dysfunction , Insulin Resistance , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/prevention & control , Diet, High-Fat/adverse effects , Hippocampus/metabolism , Humans , Inflammation/metabolism , Mice , Mice, Obese , Obesity/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Swimming
5.
Front Aging Neurosci ; 13: 755665, 2021.
Article in English | MEDLINE | ID: mdl-34658846

ABSTRACT

Neurons are highly specialized post-mitotic cells that are inherently dependent on mitochondria due to their higher bioenergetic demand. Mitochondrial dysfunction is closely associated with a variety of aging-related neurological disorders, such as Alzheimer's disease (AD), and the accumulation of dysfunctional and superfluous mitochondria has been reported as an early stage that significantly facilitates the progression of AD. Mitochondrial damage causes bioenergetic deficiency, intracellular calcium imbalance and oxidative stress, thereby aggravating ß-amyloid (Aß) accumulation and Tau hyperphosphorylation, and further leading to cognitive decline and memory loss. Although there is an intricate parallel relationship between mitochondrial dysfunction and AD, their triggering factors, such as Aß aggregation and hyperphosphorylated Tau protein and action time, are still unclear. Moreover, many studies have confirmed abnormal mitochondrial biosynthesis, dynamics and functions will present once the mitochondrial quality control is impaired, thus leading to aggravated AD pathological changes. Accumulating evidence shows beneficial effects of appropriate exercise on improved mitophagy and mitochondrial function to promote mitochondrial plasticity, reduce oxidative stress, enhance cognitive capacity and reduce the risks of cognitive impairment and dementia in later life. Therefore, stimulating mitophagy and optimizing mitochondrial function through exercise may forestall the neurodegenerative process of AD.

SELECTION OF CITATIONS
SEARCH DETAIL
...