Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Intern Med ; 295(5): 679-694, 2024 May.
Article in English | MEDLINE | ID: mdl-38528394

ABSTRACT

BACKGROUND: The association of a broad spectrum of infectious diseases with cardiovascular outcomes remains unclear. OBJECTIVES: We aim to provide the cardiovascular risk profiles associated with a wide range of infectious diseases and explore the extent to which infections reduce life expectancy. METHODS: We ascertained exposure to 900+ infectious diseases before cardiovascular disease (CVD) onset in 453,102 participants from the UK Biobank study. Time-varying Cox proportional hazard models were used. Life table was used to estimate the life expectancy of individuals aged ≥50 with different levels of infection burden (defined as the number of infection episodes over time and the number of co-occurring infections). RESULTS: Infectious diseases were associated with a greater risk of CVD events (adjusted HR [aHR] 1.79 [95% confidence interval {CI} 1.74-1.83]). For type-specific analysis, bacterial infection with sepsis had the strongest risk of CVD events [aHR 4.76 (4.35-5.20)]. For site-specific analysis, heart and circulation infections posed the greatest risk of CVD events [aHR 4.95 (95% CI 3.77-6.50)], whereas noncardiac infections also showed excess risk [1.77 (1.72-1.81)]. Synergistic interactions were observed between infections and genetic risk score. A dose-response relationship was found between infection burden and CVD risks (p-trend <0.001). Infection burden >1 led to a CVD-related life loss at age 50 by 9.3 years [95% CI 8.6-10.3]) for men and 6.6 years [5.5-7.8] for women. CONCLUSIONS: The magnitude of the infection-CVD association showed specificity in sex, pathogen type, infection burden, and infection site. High genetic risk and infection synergistically increased the CVD risk.


Subject(s)
Cardiovascular Diseases , Cross Infection , Male , Humans , Female , Middle Aged , Cardiovascular Diseases/epidemiology , Risk Factors , Life Expectancy , Hospitals
2.
Sci Total Environ ; 926: 171737, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38508272

ABSTRACT

Artificial forest ecosystems offer various ecosystem services (ES) and help mitigate climate change effects. Trade-offs or synergies exist among ES in artificial forests. Although forest age influences ES and ecosystem processes, the long-term dynamics of trade-offs among ES in artificial forests and during vegetation restorations remain unclear, complicating vegetation and sustainable management. We studied a Robinia pseudoacacia plantation on the Loess Plateau, China, with a restoration time of 10-44 years. The entropy weight method was used to assess five ES (carbon sequestration, water conservation, soil conservation, understory plant diversity, and runoff and sediment reduction) and investigate how ES change with forest age. The root mean square deviation (RMSD) was used to quantify the trade-offs among ES, and redundancy analysis (RDA) analysis was used to identify the key factors influencing the ES and trade-offs. The results showed that (1) as forest age increased, ES scores initially increased and then decreased. The optimal range for ES values was observed during the middle-aged to mature stages of the forest. (2) Before reaching maturity, the planted forests primarily delivered services related to water conservation and runoff and sediment reduction. (3) In young forests, ES showed a synergistic relationship (RMSD = 0.06), whereas trade-offs occurred in forests at other ages. The largest trade-off was observed in middle-aged forests. (4) The ES pairs with the dominant trade-offs in planted forests differed at different forest age stages. The largest trade-off occurred between carbon sequestration and water conservation (RMSD = 0.28). RDA analysis showed that understory vegetation coverage had a positive correlation with all ES. The ES indicators that significantly (P < 0.001) affected the water­carbon trade-off were tree carbon storage, soil organic carbon storage, soil total nitrogen, and soil total phosphorus. Thus, the water and carbon relationship must be balanced, and the key factors affecting ES trade-offs in forest management must be regulated to support ES multifunctionality.


Subject(s)
Ecosystem , Robinia , Carbon/analysis , Soil , Forests , China , Water
3.
Water Sci Technol ; 88(10): 2611-2632, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38017681

ABSTRACT

Accurate water quality predictions are critical for water resource protection, and dissolved oxygen (DO) reflects overall river water quality and ecosystem health. This study proposes a hybrid model based on the fusion of signal decomposition and deep learning for predicting river water quality. Initially, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is employed to split the internal series of DO into numerous internal mode functions (IMFs). Subsequently, we employed multi-scale fuzzy entropy (MFE) to compute the entropy values for each IMF component. Time-varying filtered empirical mode decomposition (TVFEMD) is used to further extract features in high-frequency subsequences after linearly aggregating the high-frequency sequences. Finally, support vector machine (SVM) and long short-term memory (LSTM) neural networks are used to predict low- and high-frequency subsequences. Moreover, by comparing it with single models, models based on 'single layer decomposition-prediction-ensemble' and combination models using different methods, the feasibility of the proposed model in predicting water quality data for the Xinlian section of Fuhe River and the Chucha section of Ganjiang River was verified. As a result, the combined prediction approach developed in this work has improved generalizability and prediction accuracy, and it may be used to forecast water quality in complicated waters.


Subject(s)
Deep Learning , Ecosystem , Water Quality , Entropy , Fresh Water , Oxygen
4.
Mol Nutr Food Res ; 67(24): e2300447, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37876150

ABSTRACT

SCOPE: Among herbal dietary supplements, the extract of Tribulus terrestris L. (TT) has been used as a commercially registered product in multiple studies. The previous studies demonstrate the protective effect of gross saponins of TT (GSTTF) on ischemic stroke. However, the mechanism by which GSTTF protects against ischemic stroke is still unclear. METHODS AND RESULTS: The study applies molecular biology and unbiased transcriptomics to explore the pathways and targets underlying the therapeutic impact of GSTTF in treating ischemic stroke. The mRNA of brain tissues from different groups is analyzed using a transcriptomics method. The data reveal that treatment with GSTTF significantly reduces elevated CRP, IL-6, and Ca2+ levels induced by middle cerebral artery occlusion (MCAO). A total of 61 differentially expressed genes (DEGs) are identified, GSTTF is found to effectively reverse the abnormal mRNA expression levels in rat brain tissues affected by ischemic stroke models. These positive effects of GSTTF are likely achieved through the suppression of calcium ion and the MyD88/IKK/NF-κB signaling pathway. CONCLUSIONS: This study uncovers the mechanisms behind the efficacy of GSTTF in treating ischemic stroke, which not only expands its potential medicinal applications but also confirmed its potential as a dietary supplement.


Subject(s)
Ischemic Stroke , Tribulus , Rats , Animals , Signal Transduction , Dietary Supplements , RNA, Messenger/genetics
5.
Front Pharmacol ; 14: 1272546, 2023.
Article in English | MEDLINE | ID: mdl-37818195

ABSTRACT

Leonurine refers to the desiccated aerial portion of a plant in the Labiatae family. The primary bioactive constituent of Leonurine is an alkaloid, Leonurine alkaloid (Leo), renowned for its substantial therapeutic efficacy in the treatment of gynecological disorders, in addition to its broad-spectrum antineoplastic capabilities. Over recent years, the pharmacodynamic mechanisms of Leo have garnered escalating scholarly interest. Leo exhibits its anticancer potential by means of an array of mechanisms, encompassing the inhibition of neoplastic cell proliferation, induction of both apoptosis and autophagy, and the containment of oncogenic cell invasion and migration. The key signal transduction pathways implicated in these processes include the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL), the Phosphoinositide3-Kinase/Serine/Threonine Protein Kinase (PI3K/AKT), the Signal Transducer and Activator of Transcription 3 (STAT3), and the Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase (MAP/ERK). This paper commences with an exploration of the principal oncogenic cellular behaviors influenced by Leo and the associated signal transduction pathways, thereby scrutinizing the mechanisms of Leo in the antineoplastic sequence of events. The intention is to offer theoretical reinforcement for the elucidation of more profound mechanisms underpinning Leo's anticancer potential and correlating pharmaceutical development.

6.
Res Sq ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37841863

ABSTRACT

Background: Previous study shows that monocyte chemoattractant protein-1 (MCP-1), which is implicated in the peripheral proinflammatory cascade and blood-brain barrier (BBB) disruption, modulates the genetic risks of AD in established AD loci. Methods: In this study, we hypothesized that blood MCP-1 impacts the AD risk of genetic variants beyond known AD loci. We thus performed a genome-wide association study (GWAS) using the logistic regression via generalized estimating equations (GEE) and the Cox proportional-hazards models to examine the interactive effects between single nucleotide polymorphisms (SNPs) and blood MCP-1 level on AD in three cohorts: the Framingham Heart Study (FHS), Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study/Memory and Aging Project (ROSMAP). Results: We identified SNPs in two genes, neuron navigator 3 (NAV3, also named Unc-53 Homolog 3, rs696468) (p < 7.55×10- 9) and Unc-5 Netrin Receptor C (UNC5C rs72659964) (p < 1.07×10- 8) that showed an association between increasing levels of blood MCP-1 and AD. Elevating blood MCP-1 concentrations increased AD risk and AD pathology in genotypes of NAV3 (rs696468-CC) and UNC5C (rs72659964-AT + TT), but did not influence the other counterpart genotypes of these variants. Conclusions: NAV3 and UNC5C are homologs and may increase AD risk through dysregulating the functions of neurite outgrowth and guidance. Overall, the association of risk alleles of NAV3 and UNC5C with AD is enhanced by peripheral MCP-1 level, suggesting that lowering the level of blood MCP-1 may reduce the risk of developing AD for people with these genotypes.

7.
Mayo Clin Proc ; 98(8): 1177-1191, 2023 08.
Article in English | MEDLINE | ID: mdl-37422736

ABSTRACT

OBJECTIVE: To evaluate the association between regular glucosamine intake and heart failure (HF) and to explore whether the association is mediated by relevant cardiovascular disease. PATIENTS AND METHODS: We included 479,650 participants with data available for supplement use and without HF at baseline from the UK Biobank study. Using 12 single-nucleotide polymorphisms linked to HF, a weighted genetic risk score was calculated. We evaluated the association between glucosamine use and HF by Cox regression models after inverse probability of treatment weighting. A validation and mediation analysis were performed through two-sample Mendelian randomization. The study was from May 18, 2006, to February 16, 2018. RESULTS: During a median follow-up of 9.0 (IQR, 8.3-9.8) years, we documented 5501 incident cases of HF. In multivariable analysis, the HR of glucosamine users for HF was 0.87 (95% CI, 0.81 to 0.94). The inverse associations were stronger in males and participants with unfavorable lifestyle (P<.05 for interaction). Genetic risk categories did not modify this association (P>.05 for interaction). Multivariable Mendelian randomization showed that taking glucosamine was protective against HF (HR, 0.92; 95% CI, 0.87 to 0.96). The mediated proportion of coronary heart disease and stroke were 10.5% (95% CI, 7.6% to 13.4%) and 14.4% (95% CI, 10.8% to 18.0%), respectively. The two-mediator combination accounted for 22.7% (95% CI, 17.2% to 28.2%) of the effect of glucosamine use. CONCLUSION: Regular glucosamine supplementation was associated with a lower risk of HF regardless of genetic risk status, and to a lesser extent, coronary heart disease and stroke mediated this effect. The results may inform novel pathway for prevention and intervention toward HF.


Subject(s)
Heart Failure , Stroke , Male , Humans , Glucosamine , Mendelian Randomization Analysis , Biological Specimen Banks , Cohort Studies , Heart Failure/epidemiology , Heart Failure/genetics , United Kingdom/epidemiology , Genome-Wide Association Study , Risk Factors
9.
BMC Med ; 21(1): 114, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36978077

ABSTRACT

BACKGROUND: Emerging data suggests the neuroprotective and anti-neuroinflammatory effects of glucosamine. We aimed to examine the association between regular glucosamine use and risk of incident dementia, including dementia subtypes. METHODS: We conducted large-scale observational and two-sample Mendelian randomization (MR) analyses. Participants in UK Biobank having accessible data for dementia incidence and who did not have dementia at baseline were included in the prospective cohort. Through the Cox proportional hazard model, we examined the risks of incident all-cause dementia, Alzheimer's disease (AD), and vascular dementia among glucosamine users and non-users. To further test the causal association between glucosamine use and dementia, we conducted a 2-sample MR utilizing summary statistics from genome-wide association studies (GWAS). The GWAS data were obtained from observational cohort participants of mostly European ancestry. RESULTS: During a median follow-up of 8.9 years, there were 2458 cases of all-cause dementia, 924 cases of AD, and 491 cases of vascular dementia. In multivariable analysis, the hazard ratios (HR) of glucosamine users for all-cause dementia, AD, and vascular dementia were 0.84 (95% CI 0.75-0.93), 0.83 (95% CI 0.71-0.98), and 0.74 (95% CI 0.58-0.95), respectively. The inverse associations between glucosamine use and AD appeared to be stronger among participants aged below 60 years than those aged above 60 years (p = 0.04 for interaction). The APOE genotype did not modify this association (p > 0.05 for interaction). Single-variable MR suggested a causal relationship between glucosamine use and lower dementia risk. Multivariable MR showed that taking glucosamine continued to protect against dementia after controlling for vitamin, chondroitin supplement use and osteoarthritis (all-cause dementia HR 0.88, 95% CI 0.81-0.95; AD HR 0.78, 95% CI 0.72-0.85; vascular dementia HR 0.73, 95% CI 0.57-0.94). Single and multivariable inverse variance weighted (MV-IVW) and MR-Egger sensitivity analyses produced similar results for these estimations. CONCLUSIONS: The findings of this large-scale cohort and MR analysis provide evidence for potential causal associations between the glucosamine use and lower risk for dementia. These findings require further validation through randomized controlled trials.


Subject(s)
Alzheimer Disease , Dementia, Vascular , Humans , Aged , Glucosamine/therapeutic use , Dementia, Vascular/epidemiology , Dementia, Vascular/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Prospective Studies , Polymorphism, Single Nucleotide/genetics
10.
Open Med (Wars) ; 18(1): 20230663, 2023.
Article in English | MEDLINE | ID: mdl-36941988

ABSTRACT

Pyroptosis is a recently identified form of programmed cell death; however, its role in lung adenocarcinoma (LUAD) remains unclear. Therefore, we set out to explore the prognostic potential of pyroptosis-related genes in LUAD. The pyroptosis-related risk score (PRRS) was developed by least absolute shrinkage and selection operator Cox regression and multivariate Cox regression. We found that PRRS was an independent prognostic factor for LUAD. LUAD patients in the high-PRRS group showed a significantly shorter overall survival (OS) and enriched in cell proliferation-related pathways. Then pathway enrichment analyses, mutation profile, tumor microenvironment, and drug sensitivity analysis were further studied in PRRS stratified LUAD patients. Tumor purity (TP) analyses revealed that L-PRRS LUAD patients had a lower TP, and patients in L-TP + L-PRRS subgroup had the most prolonged OS. Mutation analyses suggested that the L-PRRS LUAD patients had a lower tumor mutation burden (TMB), and patients in H-TMB + L-PRRS subgroup had the most prolonged OS. Drug sensitivity analyses showed that PRRS was significantly negatively correlated with the sensitivity of cisplatin, besarotene, etc., while it was significantly positively correlated with the sensitivity of kin001-135. Eventually, a nomogram was constructed based on PRRS and clinical characters of LUAD. Overall, the pyroptosis-related signature is helpful for prognostic prediction and in guiding treatment for LUAD patients.

11.
Med Image Anal ; 85: 102758, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36731275

ABSTRACT

The detection and segmentation of individual cells or nuclei is often involved in image analysis across a variety of biology and biomedical applications as an indispensable prerequisite. However, the ubiquitous presence of crowd clusters with morphological variations often hinders successful instance segmentation. In this paper, nuclei cluster focused annotation strategies and frameworks are proposed to overcome this challenging practical problem. Specifically, we design a nucleus segmentation framework, namely ClusterSeg, to tackle nuclei clusters, which consists of a convolutional-transformer hybrid encoder and a 2.5-path decoder for precise predictions of nuclei instance mask, contours, and clustered-edges. Additionally, an annotation-efficient clustered-edge pointed strategy pinpoints the salient and error-prone boundaries, where a partially-supervised PS-ClusterSeg is presented using ClusterSeg as the segmentation backbone. The framework is evaluated with four privately curated image sets and two public sets with characteristic severely clustered nuclei across a variety range of image modalities, e.g., microscope, cytopathology, and histopathology images. The proposed ClusterSeg and PS-ClusterSeg are modality-independent and generalizable, and superior to current state-of-the-art approaches in multiple metrics empirically. Our collected data, the elaborate annotations to both public and private set, as well the source code, are released publicly at https://github.com/lu-yizhou/ClusterSeg.


Subject(s)
Cell Nucleus , Software , Humans , Cell Nucleus/pathology , Microscopy , Image Processing, Computer-Assisted/methods
12.
medRxiv ; 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36711847

ABSTRACT

Cerebrovascular damage coexists with Alzheimer's disease (AD) pathology and increases AD risk. However, it is unclear whether endothelial progenitor cells reduce AD risk via cerebrovascular repair. By using the Framingham Heart Study (FHS) offspring cohort, which includes data on different progenitor cells, the incidence of AD dementia, peripheral and cerebrovascular pathologies, and genetic data (n = 1,566), we found that elevated numbers of circulating endothelial progenitor cells with CD34+CD133+ co-expressions had a dose-dependent association with decreased AD risk (HR = 0.67, 95% CI: 0.46-0.96, p = 0.03) after adjusting for age, sex, years of education, and APOE ε4. With stratification, this relationship was only significant among those individuals who had vascular pathologies, especially hypertension (HTN) and cerebral microbleeds (CMB), but not among those individuals who had neither peripheral nor central vascular pathologies. We applied a genome-wide association study (GWAS) and found that the number of CD34+CD133+ cells impacted AD risk depending on the homozygous genotypes of two genes: KIRREL3 rs580382 CC carriers (HR = 0.31, 95% CI: 0.17-0.57, p<0.001), KIRREL3 rs4144611 TT carriers (HR = 0.29, 95% CI: 0.15-0.57, p<0.001), and EXOC6B rs61619102 CC carriers (HR = 0.49, 95% CI: 0.31-0.75, p<0.001) after adjusting for confounders. In contrast, the relationship did not exist in their counterpart genotypes, e.g. KIRREL3 TT/CT or GG/GT carriers and EXOC6B GG/GC carriers. Our findings suggest that circulating CD34+CD133+ endothelial progenitor cells can be therapeutic in reducing AD risk in the presence of cerebrovascular pathology, especially in KIRREL3 and EXOC6B genotype carriers.

13.
Arthritis Care Res (Hoboken) ; 75(3): 509-518, 2023 03.
Article in English | MEDLINE | ID: mdl-35225437

ABSTRACT

OBJECTIVE: Emerging evidence indicates that hyperglycemia has an adverse impact on the knee joint which, in turn, may increase the risk of knee osteoarthritis (OA), but evidence from the real-life settings of large-scale cohort studies remains unclear. We sought to evaluate the association of glycemic control and the risk of symptomatic knee OA in a community-based cohort of older adults. METHODS: We conducted a prospective analysis of 10,730 participants without knee OA. Comprehensive blood biomarker data were obtained. Diabetes mellitus (DM) was defined mainly using a glycosylated hemoglobin (HbA1c ) level of ≥6.5%; poor glycemic control in individuals with DM was defined as an HbA1c level of ≥7%. We fit Cox regression models, stratified according to DM status. We evaluated the hazards associated with HbA1c and fasting blood glucose levels using a spline model. RESULTS: During a median follow-up of 5 years, knee OA developed in 1,089 participants (108 with DM and 971 without). Knee OA was related to DM (hazard ratio [HR] 1.29 [95% confidence interval (95% CI) 1.02-1.78]), bad glycemic regulation in DM patients (HR 1.41 [95% CI 1.05-2.09]), and long-term DM (≥5 versus <5 years; HR 1.49 [95% CI 1.02-2.17]). High levels of HbA1c (>7.7% and 61 mmoles/mole) and fasting blood glucose (>186 mg/dl) were significantly associated with higher risk of incident knee OA. CONCLUSION: DM, bad glycemic management, and long-term DM are potential risk factors of symptomatic knee OA independent of age and body mass index. Targeting blood glucose, in addition to bodyweight, may be an important avenue for prevention of knee OA.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Osteoarthritis, Knee , Humans , Aged , Blood Glucose , Risk Factors
14.
Alzheimers Dement ; 19(5): 1925-1937, 2023 05.
Article in English | MEDLINE | ID: mdl-36396603

ABSTRACT

INTRODUCTION: C-Reactive protein (CRP) and monocyte chemoattractant protein-1 (MCP-1) are both implicated in the peripheral proinflammatory cascade and blood-brain barrier (BBB) disruption. Since the blood CRP level increases Alzheimer's disease (AD) risk depending on the apolipoprotein E (APOE) genotype, we hypothesized that the blood MCP-1 level exerts different effects on the AD risk depending on the genotypes. METHODS: Using multiple regression analyses, data from the Framingham Heart Study (n = 2884) and Alzheimer's Disease Neuroimaging Initiative study (n = 231) were analyzed. RESULTS: An elevated blood MCP-1 level was associated with AD risk in major histocompatibility complex, Class II, DR beta 1 (HLA-DRB1) rs9271192-AC/CC (hazard ratio [HR] = 3.07, 95% confidence interval [CI] = 1.50-6.28, p = 0.002) and in APOE ε4 carriers (HR = 3.22, 95% CI = 1.59-6.53, p = 0.001). In contrast, among HLA-DRB1 rs9271192-AA and APOE ε4 noncarriers, blood MCP-1 levels were not associated with these phenotypes. DISCUSSION: Since HLA-DRB1 and APOE are expressed in the BBB, blood MCP-1 released in the peripheral inflammatory cascade may function as a mediator of the effects of HLA-DRB1 rs9271192-AC/CC and APOE ε4 genotypes on AD pathogenesis in the brain via the BBB pathways.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Chemokine CCL2 , HLA-DRB1 Chains , Humans , Alzheimer Disease/blood , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Chemokine CCL2/blood , Genotype , HLA-DRB1 Chains/genetics
15.
Front Immunol ; 14: 1315602, 2023.
Article in English | MEDLINE | ID: mdl-38268924

ABSTRACT

Introduction: There is insufficient understanding on systemic interferon (IFN) responses during COVID-19 infection. Early reports indicated that interferon responses were suppressed by the coronavirus (SARS-CoV-2) and clinical trials of administration of various kinds of interferons had been disappointing. Expression of interferon-stimulated genes (ISGs) in peripheral blood (better known as interferon score) has been a well-established bioassay marker of systemic IFN responses in autoimmune diseases. Therefore, with archival samples of a cohort of COVID-19 patients collected before the availability of vaccination, we aimed to better understand this innate immune response by studying the IFN score and related ISGs expression in bulk and single cell RNAs sequencing expression datasets. Methods: In this study, we recruited 105 patients with COVID-19 and 30 healthy controls in Hong Kong. Clinical risk factors, disease course, and blood sampling times were recovered. Based on a set of five commonly used ISGs (IFIT1, IFIT2, IFI27, SIGLEC1, IFI44L), the IFN score was determined in blood leukocytes collected within 10 days after onset. The analysis was confined to those blood samples collected within 10 days after disease onset. Additional public datasets of bulk gene and single cell RNA sequencing of blood samples were used for the validation of IFN score results. Results: Compared to the healthy controls, we showed that ISGs expression and IFN score were significantly increased during the first 10 days after COVID infection in majority of patients (71%). Among those low IFN responders, they were more commonly asymptomatic patients (71% vs 25%). 22 patients did not mount an overall significant IFN response and were classified as low IFN responders (IFN score < 1). However, early IFN score or ISGs level was not a prognostic biomarker and could not predict subsequent disease severity. Both IFI27 and SIGLEC1 were monocyte-predominant expressing ISGs and IFI27 were activated even among those low IFN responders as defined by IFN score. In conclusion, a substantial IFN response was documented in this cohort of COVID-19 patients who experience a natural infection before the vaccination era. Like innate immunity towards other virus, the ISGs activation was observed largely during the early course of infection (before day 10). Single-cell RNA sequencing data suggested monocytes were the cell-type that primarily accounted for the activation of two highly responsive ISGs (IFI44L and IFI27). Discussion: As sampling time and age were two major confounders of ISG expression, they may account for contradicting observations among previous studies. On the other hand, the IFN score was not associated with the severity of the disease.


Subject(s)
COVID-19 , Vaccines , Humans , Interferons/genetics , COVID-19/genetics , SARS-CoV-2 , Immunity, Innate/genetics
16.
Inf Process Med Imaging ; 13939: 278-290, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38774602

ABSTRACT

This study proposes a novel heterogeneous graph convolutional neural network (HGCNN) to handle complex brain fMRI data at regional and across-region levels. We introduce a generic formulation of spectral filters on heterogeneous graphs by introducing the k-th Hodge-Laplacian (HL) operator. In particular, we propose Laguerre polynomial approximations of HL spectral filters and prove that their spatial localization on graphs is related to the polynomial order. Furthermore, based on the bijection property of boundary operators on simplex graphs, we introduce a generic topological graph pooling (TGPool) method that can be used at any dimensional simplices. This study designs HL-node, HL-edge, and HL-HGCNN neural networks to learn signal representation at a graph node, edge levels, and both, respectively. Our experiments employ fMRI from the Adolescent Brain Cognitive Development (ABCD; n=7693) to predict general intelligence. Our results demonstrate the advantage of the HL-edge network over the HL-node network when functional brain connectivity is considered as features. The HL-HGCNN outperforms the state-of-the-art graph neural networks (GNNs) approaches, such as GAT, BrainGNN, dGCN, BrainNetCNN, and Hypergraph NN. The functional connectivity features learned from the HL-HGCNN are meaningful in interpreting neural circuits related to general intelligence.

17.
Transl Psychiatry ; 12(1): 523, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550123

ABSTRACT

Apolipoprotein ε4 (APOE ε4) is the most significant genetic risk factor for late-onset Alzheimer's disease (AD). Elevated blood C-reactive protein (CRP) further increases the risk of AD for people carrying the APOE ε4 allele. We hypothesized that CRP, as a key inflammatory element, could modulate the impact of other genetic variants on AD risk. We selected ten single nucleotide polymorphisms (SNPs) in reported AD risk loci encoding proteins related to inflammation. We then tested the interaction effects between these SNPs and blood CRP levels on AD incidence using the Cox proportional hazards model in UK Biobank (n = 279,176 white participants with 803 incident AD cases). The five top SNPs were tested for their interaction with different CRP cutoffs for AD incidence in the Framingham Heart Study (FHS) Generation 2 cohort (n = 3009, incident AD = 156). We found that for higher concentrations of serum CRP, the AD risk increased for SNP genotypes in 3 AD-associated genes (SPI1, CD33, and CLU). Using the Cox model in stratified genotype analysis, the hazard ratios (HRs) for the association between a higher CRP level (≥10 vs. <10 mg/L) and the risk of incident AD were 1.94 (95% CI: 1.33-2.84, p < 0.001) for the SPI1 rs1057233-AA genotype, 1.75 (95% CI: 1.20-2.55, p = 0.004) for the CD33 rs3865444-CC genotype, and 1.76 (95% CI: 1.25-2.48, p = 0.001) for the CLU rs9331896-C genotype. In contrast, these associations were not observed in the other genotypes of these genes. Finally, two SNPs were validated in 321 Alzheimer's Disease Neuroimaging (ADNI) Mild Cognitive Impairment (MCI) patients. We observed that the SPI1 and CD33 genotype effects were enhanced by elevated CRP levels for the risk of MCI to AD conversion. Furthermore, the SPI1 genotype was associated with CSF AD biomarkers, including t-Tau and p-Tau, in the ADNI cohort when the blood CRP level was increased (p < 0.01). Our findings suggest that elevated blood CRP, as a peripheral inflammatory biomarker, is an important moderator of the genetic effects of SPI1 and CD33 in addition to APOE ε4 on AD risk. Monitoring peripheral CRP levels may be helpful for precise intervention and prevention of AD for these genotype carriers.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , C-Reactive Protein , Apolipoprotein E4/genetics , tau Proteins/genetics , Genotype , Biomarkers , Apolipoproteins E/genetics , Sialic Acid Binding Ig-like Lectin 3/genetics
18.
J Biol Chem ; 298(11): 102599, 2022 11.
Article in English | MEDLINE | ID: mdl-36244448

ABSTRACT

Mutations in the hyperpolarization-activated nucleotide-gated channel 4 (HCN4) are known to be associated with arrhythmias in which QT prolongation (delayed ventricular repolarization) is rare. Here, we identified a HCN4 mutation, HCN4-R666Q, in two sporadic arrhythmia patients with sinus bradycardia, QT prolongation, and short bursts of ventricular tachycardia. To determine the functional effect of the mutation, we conducted clinical, genetic, and functional analyses using whole-cell voltage-clamp, qPCR, Western blot, confocal microscopy, and co-immunoprecipitation. The mean current density of HEK293T cells transfected with HCN4-R666Q was lower in 24 to 36 h after transfection and was much lower in 36 to 48 h after transfection relative to cells transfected with wildtype HCN4. Additionally, we determined that the HCN4-R666Q mutant was more susceptible to ubiquitin-proteasome system-mediated protein degradation than wildtype HCN4. This decreased current density for HCN4-R666Q could be partly rescued by treatment with a proteasome inhibitor. Therefore, we conclude that HCN4-R666Q had an effect on HCN4 function in two aspects, including decreasing the current density of the channel as a biophysical effect and weakening its protein stability. Our findings provide new insights into the pathogenesis of the HCN4-R666Q mutation.


Subject(s)
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Long QT Syndrome , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Potassium Channels/metabolism , Proteolysis , Nucleotides/metabolism , HEK293 Cells , Muscle Proteins/metabolism , Arrhythmias, Cardiac/genetics , Mutation , Cyclic Nucleotide-Gated Cation Channels/genetics
19.
JACC Cardiovasc Imaging ; 15(4): 578-590, 2022 04.
Article in English | MEDLINE | ID: mdl-34538631

ABSTRACT

OBJECTIVES: The aim of this study is to examine the prognostic value of T1 mapping and the extracellular volume (ECV) fraction in patients with dilated cardiomyopathy (DCM). BACKGROUND: Patients with DCM with functional left ventricular remodeling have poorer prognoses. Noninvasive assessment of myocardial fibrosis using T1 mapping and the ECV fraction may improve risk stratification of patients with DCM; however, this has not yet been systematically evaluated. METHODS: A total of 659 consecutive patients with DCM (498 men; 45 ± 15 years) who underwent cardiac magnetic resonance with T1 mapping and late gadolinium enhancement (LGE) imaging with a 1.5-T magnetic resonance scanner were enrolled in this study. Primary endpoints were cardiac-related death and heart transplantation. Secondary endpoints were hospitalization for heart failure, ventricular arrhythmias, and implantable cardioverter-defibrillator or cardiac resynchronization therapy implantation. Survival estimates were calculated by Kaplan-Meier curves with the log-rank test. RESULTS: During a mean follow-up of 66.3 ± 20.9 months, 122 and 205 patients with DCM reached the primary and secondary endpoints, respectively. The presence of LGE had an association with both of the primary and secondary endpoints observed in the patients with DCM (both P < 0.001). The maximum native T1 (HR: 1.04; 95% CI: 1.02-1.09) and maximum ECV fraction (HR: 1.14; 95% CI: 1.08-1.21) had associations with the primary endpoints in the patients with positive LGE (both P < 0.001), whereas the mean native T1 (HR: 1.13; 95% CI: 1.10-1.36) and mean ECV fraction (HR: 1.32; 95% CI: 1.12-1.53) had the best associations in the patients with negative LGE (all P < 0.001). CONCLUSIONS: T1 mapping and the ECV fraction had prognostic value in patients with DCM and were particularly important in patients with DCM without LGE. Using a combination of T1 mapping, ECV fraction, and LGE provided optimal risk stratification for patients with DCM.


Subject(s)
Cardiomyopathy, Dilated , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/therapy , Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging, Cine , Male , Myocardium/pathology , Predictive Value of Tests , Prognosis , Stroke Volume
20.
Insights Imaging ; 12(1): 184, 2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34894296

ABSTRACT

BACKGROUND: As the paucity of data focusing on evaluating cardiac structure and function in patients with or without gene mutation, this study was sought to investigate the correlation between genotype and cardiac magnetic resonance (CMR) phenotype in patients with left ventricular non-compaction cardiomyopathy (LVNC) and to explore prognostic relevance in this cohort if possible. METHODS: Patients with LVNC who underwent CMR and targeted gene sequencing between 2006 and 2016 were retrospectively evaluated. Demographic data, clinical presentation, genetic analysis, CMR data and follow-up data of all participants were collected. RESULTS: Compared to negative genotype (G-) group, patients with positive genotype (G+) had larger left atrial volume (LAV), and carriers of multiple variants had lower left ventricular (LV) ejection fraction and cardiac index, increased LV fibrosis, larger LA volume, reduced LV global circumferential strain, LA reservoir strain and booster pump strain (all p < 0.05). LA volume was able to discriminate patients with G + (all p < 0.05), as well as those with multiple genetic mutation (all p < 0.01). During a median follow-up of 5.1 years, Kaplan-Meier survival analysis revealed worse primary endpoint-free survival among carriers of multiple variants compared to G- group. CONCLUSIONS: CMR feature tracking is a remarkable tool to evaluate implication, genetics cascade screen and predict outcome in LVNC population. LA volume is a sensitive and robust indicator for genetic mutational condition, of which facilities to guide clinical management and intensity of follow-up for patients and their relatives.

SELECTION OF CITATIONS
SEARCH DETAIL
...