Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(9): e0203834, 2018.
Article in English | MEDLINE | ID: mdl-30212556

ABSTRACT

The weak interlayer refers to the filling material in shear belts or large-scale structural planes, which is usually composed of soil, fine sand and gravels. It is prone to argillization when encountering water and its mechanical strength and stiffness are generally low, which has adverse effects on the stability of underground structures. In recent years, research on reinforcement techniques for weak interlayers has been a hot topic in geotechnical field. As a new reinforcement method for structural planes, the microbial healing technique has attracted a lot of attention. In this paper, a study on the healing technique for weak interlayer based on microbially induced calcium carbonate precipitation (MICP) and related mechanical properties was conducted for the interlayer shear belt at Baihetan Hydropower Station in China. First, Sporosarcina pasteurii was activated in laboratory. Reinforcement of the weak interlayer was realized by utilizing calcium carbonate precipitation on the weak interlayer. Continuous monitoring of the precipitates on the weak interlayer by XRD and SEM indicated that the precipitates on the weak layer were microbially induced calcium carbonate. Its crystals were irregular fish scale-shaped cubes with size in the range of 5~20µm. With favorable crystal growth, the crystals and the particles of the weak interlayer were cemented together. Finally, the mechanical properties of the healed weak interlayer were tested and the variations of uniaxial compressive strength, shear strength and triaxial compressive strength with bacteria concentration were discussed. The test results indicated that the maximum uniaxial compressive strength, peak shear strength and triaxial compressive strength can be increased by 149%, 162% and 119%, respectively, which subsequently improve the overall strength of the shear zone or structural plane. This can provide a new idea for soft ground reinforcement in underground projects.


Subject(s)
Calcium Carbonate/metabolism , Construction Industry/methods , Soil Microbiology , Sporosarcina/metabolism , Calcium Carbonate/chemistry , Chemical Precipitation , Microscopy, Electron, Scanning , Power Plants , Shear Strength
2.
J Hematol Oncol ; 8: 26, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25886453

ABSTRACT

BACKGROUND: Aloperine, a natural alkaloid constituent isolated from the herb Sophora alopecuroides displays anti-inflammatory properties in vitro and in vivo. Our group previously demonstrated that aloperine significantly induced apoptosis in colon cancer SW480 and HCT116 cells. However, its specific target(s) remain to be discovered in multiple myeloma (MM) and have not been investigated. METHODS: Human myeloma cell lines (n = 8), primary myeloma cells (n = 12), drug-resistant myeloma cell lines (n = 2), and animal models were tested for their sensitivity to aloperine in terms of proliferation and apoptosis both in vitro and in vivo, respectively. We also examined the functional mechanisms underlying the apoptotic pathways triggered by aloperine. RESULTS: Aloperine induced MM cell death in a dose- and time-dependent manner, even in the presence of the proliferative cytokines interleukin-6 and insulin-like growth factor I. Mechanistic studies revealed that aloperine not only activated caspase-8 and reduced the expression of FADD-like interleukin-1ß-converting enzyme (FLICE)-like inhibitory protein long (FLIPL) and FLICE-inhibitory proteins (FLIPS) but also activated caspase-9 and decreased the expression of phosphorylated (p)-PTEN. Moreover, co-activation of the caspase-8/cellular FLICE-inhibitory protein (cFLIP)- and caspase-9/p-PTEN/p-AKT-dependent apoptotic pathways by aloperine caused irreversible inhibition of clonogenic survival. Aloperine induce more MM apoptosis with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or borterzomib. A U266 xenograft tumor model and 5T33 MM cells recapitulated the antitumor efficacy of aloperine, and the animals displayed excellent tolerance of the drug and few adverse effects. CONCLUSIONS: Aloperine has multifaceted antitumor effects on MM cells. Our data support the clinical development of aloperine for MM therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Multiple Myeloma/pathology , Piperidines/pharmacology , Animals , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Quinolizidines , RNA, Small Interfering , Transfection , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...