Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108688

ABSTRACT

White spot syndrome virus (WSSV) is a very large dsDNA virus. The accepted shape of the WSSV virion has been as ellipsoidal, with a tail-like extension. However, due to the scarcity of reliable references, the pathogenesis and morphogenesis of WSSV are not well understood. Here, we used transmission electron microscopy (TEM) and cryogenic electron microscopy (Cryo-EM) to address some knowledge gaps. We concluded that mature WSSV virions with a stout oval-like shape do not have tail-like extensions. Furthermore, there were two distinct ends in WSSV nucleocapsids: a portal cap and a closed base. A C14 symmetric structure of the WSSV nucleocapsid was also proposed, according to our Cryo-EM map. Immunoelectron microscopy (IEM) revealed that VP664 proteins, the main components of the 14 assembly units, form a ring-like architecture. Moreover, WSSV nucleocapsids were also observed to undergo unique helical dissociation. Based on these new results, we propose a novel morphogenetic pathway of WSSV.


Subject(s)
Penaeidae , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/genetics , Nucleocapsid/chemistry , Nucleocapsid/metabolism , Virion/metabolism , Microscopy, Electron , Microscopy, Immunoelectron
2.
Int J Mol Sci ; 23(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35270031

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) in shrimp is caused by Vibrio strains that harbor a pVA1-like plasmid containing the pirA and pirB genes. It is also known that the production of the PirA and PirB proteins, which are the key factors that drive the observed symptoms of AHPND, can be influenced by environmental conditions and that this leads to changes in the virulence of the bacteria. However, to our knowledge, the mechanisms involved in regulating the expression of the pirA/pirB genes have not previously been investigated. In this study, we show that in the AHPND-causing Vibrio parahaemolyticus 3HP strain, the pirAvp and pirBvp genes are highly expressed in the early log phase of the growth curve. Subsequently, the expression of the PirAvp and PirBvp proteins continues throughout the log phase. When we compared mutant strains with a deletion or substitution in two of the quorum sensing (QS) master regulators, luxO and/or opaR (luxOD47E, ΔopaR, ΔluxO, and ΔopaRΔluxO), our results suggested that expression of the pirAvp and pirBvp genes was related to the QS system, with luxO acting as a negative regulator of pirAvp and pirBvp without any mediation by opaRvp. In the promoter region of the pirAvp/pirBvp operon, we also identified a putative consensus binding site for the QS transcriptional regulator AphB. Real-time PCR further showed that aphBvp was negatively controlled by LuxOvp, and that its expression paralleled the expression patterns of pirAvp and pirBvp. An electrophoretic mobility shift assay (EMSA) showed that AphBvp could bind to this predicted region, even though another QS transcriptional regulator, AphAvp, could not. Taken together, these findings suggest that the QS system may regulate pirAvp/pirBvp expression through AphBvp.


Subject(s)
Penaeidae , Toxins, Biological , Vibrio parahaemolyticus , Animals , Necrosis , Penaeidae/microbiology , Quorum Sensing/genetics , Toxins, Biological/metabolism
3.
Dev Comp Immunol ; 108: 103667, 2020 07.
Article in English | MEDLINE | ID: mdl-32147468

ABSTRACT

Viral glycoproteins are expressed by many viruses, and during infection they usually play very important roles, such as receptor attachment or membrane fusion. The mature virion of the white spot syndrome virus (WSSV) is unusual in that it contains no glycosylated proteins, and there are currently no reports of any glycosylation mechanisms in the pathogenesis of this virus. In this study, we cloned a glycosylase, mannosyl-glycoprotein endo-ß-N-acetylglucosaminidase (ENGase, EC 3.2.1.96), from Penaeus monodon and found that it was significantly up-regulated in WSSV-infected shrimp. A yeast two-hybrid assay showed that PmENGase interacted with both structural and non-structural proteins, and GST-pull down and co-immunoprecipitation (Co-IP) assays confirmed its interaction with the envelope protein VP41B. In the WSSV challenge tests, the cumulative mortality and viral copy number were significantly decreased in the PmEngase-silenced shrimp, from which we conclude that shrimp glycosylase interacts with WSSV in a way that benefits the virus. Lastly, we speculate that the deglycosylation activity of PmENGase might account for the absence of glycosylated proteins in the WSSV virion.


Subject(s)
Arthropod Proteins/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Penaeidae/virology , Viral Envelope Proteins/metabolism , White spot syndrome virus 1/pathogenicity , Animals , Aquaculture , Arthropod Proteins/genetics , Arthropod Proteins/isolation & purification , Cell Line , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/genetics , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/isolation & purification , Penaeidae/immunology , Protein Binding/immunology , RNA Interference , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Ribonucleases/metabolism , Two-Hybrid System Techniques , Up-Regulation/immunology , White spot syndrome virus 1/immunology , White spot syndrome virus 1/metabolism
4.
Front Immunol ; 8: 1084, 2017.
Article in English | MEDLINE | ID: mdl-28932224

ABSTRACT

Members of the microRNA miR-10 family are highly conserved and play many important roles in diverse biological mechanisms, including immune-related responses and cancer-related processes in certain types of cancer. In this study, we found the most highly upregulated shrimp microRNA from Penaeus vannamei during white spot syndrome virus (WSSV) infection was miR-10a. After confirming the expression level of miR-10a by northern blot and quantitative RT-PCR, an in vivo experiment showed that the viral copy number was decreased in miR-10a-inhibited shrimp. We found that miR-10a targeted the 5' untranslated region (UTR) of at least three viral genes (vp26, vp28, and wssv102), and plasmids that were controlled by the 5' UTR of these genes produced enhanced luciferase signals in transfected SF9 cells. These results suggest a previously unreported role for shrimp miR-10a and even a new type of host-virus interaction, whereby a co-opts the key cellular regulator miR-10a to globally enhance the translation of viral proteins.

5.
PLoS One ; 10(9): e0138207, 2015.
Article in English | MEDLINE | ID: mdl-26380977

ABSTRACT

Shrimp white spot disease (WSD), which is caused by white spot syndrome virus (WSSV), is one of the world's most serious shrimp diseases. Our objective in this study was to use an immunomagnetic reduction (IMR) assay to develop a highly sensitive, automatic WSSV detection platform targeted against ICP11 (the most highly expressed WSSV protein). After characterizing the magnetic reagents (Fe3O4 magnetic nanoparticles coated with anti ICP11), the detection limit for ICP11 protein using IMR was approximately 2 x 10(-3) ng/ml, and the linear dynamic range of the assay was 0.1~1 x 10(6) ng/ml. In assays of ICP11 protein in pleopod protein lysates from healthy and WSSV-infected shrimp, IMR signals were successfully detected from shrimp with low WSSV genome copy numbers. We concluded that this IMR assay targeting ICP11 has potential for detecting the WSSV.


Subject(s)
Arthropod Proteins/immunology , Immunoprecipitation/methods , Magnetite Nanoparticles , Penaeidae/virology , White spot syndrome virus 1/metabolism , Animal Diseases/diagnosis , Animal Diseases/virology , Animals , Arthropod Proteins/metabolism , Blotting, Western , Immunoprecipitation/veterinary , Limit of Detection , Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , Viral Envelope Proteins/analysis , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , White spot syndrome virus 1/genetics , White spot syndrome virus 1/immunology , White spot syndrome virus 1/isolation & purification
6.
Proc Natl Acad Sci U S A ; 112(34): 10798-803, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26261348

ABSTRACT

Acute hepatopancreatic necrosis disease (AHPND) is a severe, newly emergent penaeid shrimp disease caused by Vibrio parahaemolyticus that has already led to tremendous losses in the cultured shrimp industry. Until now, its disease-causing mechanism has remained unclear. Here we show that an AHPND-causing strain of V. parahaemolyticus contains a 70-kbp plasmid (pVA1) with a postsegregational killing system, and that the ability to cause disease is abolished by the natural absence or experimental deletion of the plasmid-encoded homologs of the Photorhabdus insect-related (Pir) toxins PirA and PirB. We determined the crystal structure of the V. parahaemolyticus PirA and PirB (PirA(vp) and PirB(vp)) proteins and found that the overall structural topology of PirA(vp)/PirB(vp) is very similar to that of the Bacillus Cry insecticidal toxin-like proteins, despite the low sequence identity (<10%). This structural similarity suggests that the putative PirAB(vp) heterodimer might emulate the functional domains of the Cry protein, and in particular its pore-forming activity. The gene organization of pVA1 further suggested that pirAB(vp) may be lost or acquired by horizontal gene transfer via transposition or homologous recombination.


Subject(s)
Bacterial Proteins/isolation & purification , Bacterial Toxins/isolation & purification , Plasmids/metabolism , Vibrio parahaemolyticus/pathogenicity , Animals , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Conjugation, Genetic , DNA, Bacterial/genetics , Genes, Bacterial , Models, Molecular , Molecular Sequence Data , Open Reading Frames/genetics , Penaeidae/microbiology , Plasmids/genetics , Porins/chemistry , Protein Conformation , Sequence Homology, Nucleic Acid , Vibrio parahaemolyticus/genetics , Virulence/genetics
7.
Mol Cell Proteomics ; 13(1): 269-82, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24217020

ABSTRACT

White spot syndrome virus (WSSV) is currently the most serious global threat for cultured shrimp production. Although its large, double-stranded DNA genome has been completely characterized, most putative protein functions remain obscure. To provide more informative knowledge about this virus, a proteomic-scale network of WSSV-WSSV protein interactions was carried out using a comprehensive yeast two-hybrid analysis. An array of yeast transformants containing each WSSV open reading frame fused with GAL4 DNA binding domain and GAL4 activation domain was constructed yielding 187 bait and 182 prey constructs, respectively. On screening of ∼28,000 pairwise combinations, 710 interactions were obtained from 143 baits. An independent coimmunoprecipitation assay (co-IP) was performed to validate the selected protein interaction pairs identified from the yeast two-hybrid approach. The program Cytoscape was employed to create a WSSV protein-protein interaction (PPI) network. The topology of the WSSV PPI network was based on the Barabási-Albert model and consisted of a scale-free network that resembled other established viral protein interaction networks. Using the RNA interference approach, knocking down either of two candidate hub proteins gave shrimp more protection against WSSV than knocking down a nonhub gene. The WSSV protein interaction map established in this study provides novel guidance for further studies on shrimp viral pathogenesis, host-viral protein interaction and potential targets for therapeutic and preventative antiviral strategies in shrimp aquaculture.


Subject(s)
Penaeidae/virology , Protein Interaction Maps/genetics , Proteomics , White spot syndrome virus 1/genetics , Animals , Host-Pathogen Interactions/genetics , Transcriptome , Viral Proteins/genetics , White spot syndrome virus 1/metabolism
8.
Gene ; 518(1): 35-41, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23274654

ABSTRACT

Biological systems are often organized spatially and temporally by multi-scale functional subsystems (modules). A specific subcellular process often corresponds to a subsystem composed of some of these interconnected modules. Accurate identification of system-level modularity organization from the large scale networks can provide valuable information on subsystem models of subcellular processes or physiological phenomena. Computational identification of functional modules from the large scale network is the key approach to solve the complexity of modularity in the past decade, but the overlapping and multi-scale nature of modules often renders unsatisfactory results in these methods. Most current methods for modularity detection are optimization-based and suffered from the drawback of size resolution limit. It is difficult to trace the origin of the unsatisfactory results, which may be due to poor data, inappropriate objective function selection or simply resulted from natural evolution, and hence no system-level accurate modular models for subcellular processes can be offered. Motivated by the idea of evolution with robustness and adaption as guiding principles, we propose a novel approach that can identify significant multi-scale overlapping modules that are sufficiently accurate at the system and subsystem levels, giving biological insights for subcellular processes. The success of our evolution strategy method is demonstrated by applying to the yeast protein-protein interaction network. Functional subsystems of important physiological phenomena can be revealed. In particular, the cell cycle controlling network is selected for detailed discussion. The cell cycle subcellular processes in yeast can be successfully dissected into functional modules of cell cycle control, cell size check point, spindle assembly checkpoint, and DNA damage check point in G2/M and S phases. The interconnections between check points and cell cycle control modules provide clues on the signal stimulus entries of check points into the cell cycle, which are consistent with experimental findings. This evolution strategy method can be applied adequately to extract the plausible yeast cell cycle subnetworks from the whole network. Connections between modules in the obtained cell cycle subnetworks reveal significant cell cycle control mechanisms. This method can also be useful when applied to other biological systems at various temporal and spatial scales for example, the gene transcription networks, and biological systems from mesoscopic scale, e.g cortical network in brain, to subcellular molecular networks.


Subject(s)
Cell Cycle/genetics , Evolution, Molecular , Gene Regulatory Networks , Models, Biological , Protein Interaction Maps/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , DNA Damage , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
Fish Shellfish Immunol ; 34(4): 1011-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22683516

ABSTRACT

White spot syndrome virus (WSSV) is an enveloped, large dsDNA virus that mainly infects penaeid shrimp, causing serious damage to the shrimp aquaculture industry. Like other animal viruses, WSSV infection induces apoptosis. Although this occurs even in by-stander cells that are free of WSSV virions, apoptosis is generally regarded as a kind of antiviral immune response. To counter this response, WSSV has evolved several different strategies. From the presently available literature, we construct a model of how the host and virus both attempt to regulate apoptosis to their respective advantage. The basic sequence of events is as follows: first, when a WSSV infection occurs, cellular sensors detect the invading virus, and activate signaling pathways that lead to (1) the expression of pro-apoptosis proteins, including PmCasp (an effecter caspase), MjCaspase (an initiator caspase) and voltage-dependent anion channel (VDAC); and (2) mitochondrial changes, including the induction of mitochondrial membrane permeabilization and increased oxidative stress. These events initiate the apoptosis program. Meanwhile, WSSV begins to express its genes, including two anti-apoptosis proteins: AAP-1, which is a direct caspase inhibitor, and WSV222, which is an E3 ubiquitin ligase that blocks apoptosis through the ubiquitin-mediated degradation of shrimp TSL protein (an apoptosis inducer). WSSV also induces the expression of a shrimp anti-apoptosis protein, Pm-fortilin, which can act on Bax to inhibit mitochondria-triggered apoptosis. This is a life and death struggle because the virus needs to prevent apoptosis in order to replicate. If WSSV succeeds in replicating in sufficient numbers, this will result in the death of the infected penaeid shrimp host.


Subject(s)
Apoptosis/immunology , DNA Virus Infections/immunology , Penaeidae/immunology , White spot syndrome virus 1/immunology , Animals , DNA Virus Infections/pathology , DNA Virus Infections/virology , Penaeidae/virology
10.
Dev Comp Immunol ; 38(1): 128-35, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22564859

ABSTRACT

In the early days of shrimp aquaculture, wild-captured brooders usually spawned repeatedly once every 2-4days. However, since the first outbreaks of white spot disease (WSD) nearly 20years ago, captured female brooders often died soon after a single spawning. Although these deaths were clearly attributable to WSD, it has always been unclear how spawning stress could lead to an outbreak of the disease. Using real-time qPCR, we show here that while replication of the white spot syndrome virus (WSSV; the causative agent of WSD) is triggered by spawning, there was no such increase in the levels of another shrimp DNA virus, IHHNV (infectious hypodermal and hematopoietic necrosis virus). We also show that levels of activated STAT are increased in brooders during and after spawning, which is important because shrimp STAT is known to transactivate the expression of the WSSV immediate early gene ie1. Lastly, we used dsRNA silencing experiment to show that both WSSV ie1 gene expression and WSSV genome copy number were reduced significantly after shrimp STAT was knocked-down. This is the first report to demonstrate in vivo that shrimp STAT is important for WSSV replication and that spawning stress increases activated STAT, which in turn triggers WSSV replication in WSSV-infected brooders.


Subject(s)
Arthropod Proteins/metabolism , Penaeidae/physiology , Penaeidae/virology , STAT Transcription Factors/metabolism , White spot syndrome virus 1/physiology , Animals , Arthropod Proteins/genetics , Densovirinae/genetics , Densovirinae/physiology , Gene Dosage , Gene Knockdown Techniques , Genes, Immediate-Early , Penaeidae/genetics , STAT Transcription Factors/genetics , Stress, Physiological , White spot syndrome virus 1/genetics
11.
Antioxid Redox Signal ; 17(6): 914-26, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22332765

ABSTRACT

AIMS: In this study we identified viral gene targets of the important redox regulator thioredoxin (Trx), and explored in depth how Trx interacts with the immediate early gene #1 (IE1) of the white spot syndrome virus (WSSV). RESULTS: In a pull-down assay, we found that recombinant Trx bound to IE1 under oxidizing conditions, and a coimmunoprecipitation assay showed that Trx bound to WSSV IE1 when the transfected cells were subjected to oxidative stress. A pull-down assay with Trx mutants showed that no IE1 binding occurred when cysteine 62 was replaced by serine. Electrophoretic mobility shift assay (EMSA) showed that the DNA binding activity of WSSV IE1 was downregulated under oxidative conditions, and that Penaeus monodon Trx (PmTrx) restored the DNA binding activity of the inactivated, oxidized WSSV IE1. Another EMSA experiment showed that IE1's Cys-X-X-Cys motif and cysteine residue 55 were necessary for DNA binding. Measurement of the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in WSSV-infected shrimp showed that oxidative stress was significantly increased at 48 h postinfection. The biological significance of Trx was also demonstrated in a double-strand RNA Trx knockdown experiment where suppression of shrimp Trx led to significant decreases in mortality and viral copy numbers. INNOVATION AND CONCLUSION: WSSV's pathogenicity is enhanced by the virus' use of host Trx to rescue the DNA binding activity of WSSV IE1 under oxidizing conditions.


Subject(s)
DNA, Viral/metabolism , Thioredoxins/metabolism , White spot syndrome virus 1/genetics , White spot syndrome virus 1/pathogenicity , Animals , Cell Line , Electrophoretic Mobility Shift Assay , Immunoprecipitation , Penaeidae/metabolism , Penaeidae/virology , Protein Binding
12.
J Virol ; 85(24): 12919-28, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21976644

ABSTRACT

The Warburg effect is an abnormal glycolysis response that is associated with cancer cells. Here we present evidence that metabolic changes resembling the Warburg effect are induced by a nonmammalian virus. When shrimp were infected with white spot syndrome virus (WSSV), changes were induced in several metabolic pathways related to the mitochondria. At the viral genome replication stage (12 h postinfection [hpi]), glucose consumption and plasma lactate concentration were both increased in WSSV-infected shrimp, and the key enzyme of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PDH), showed increased activity. We also found that at 12 hpi there was no alteration in the ADP/ATP ratio and that oxidative stress was lower than that in uninfected controls. All of these results are characteristic of the Warburg effect as it is present in mammals. There was also a significant decrease in triglyceride concentration starting at 12 hpi. At the late stage of the infection cycle (24 hpi), hemocytes of WSSV-infected shrimp showed several changes associated with cell death. These included the induction of mitochondrial membrane permeabilization (MMP), increased oxidative stress, decreased glucose consumption, and disrupted energy production. A previous study showed that WSSV infection led to upregulation of the voltage-dependent anion channel (VDAC), which is known to be involved in both the Warburg effect and MMP. Here we show that double-stranded RNA (dsRNA) silencing of the VDAC reduces WSSV-induced mortality and virion copy number. For these results, we hypothesize a model depicting the metabolic changes in host cells at the early and late stages of WSSV infection.


Subject(s)
Glycolysis , Hemocytes/metabolism , Hemocytes/virology , Penaeidae/virology , White spot syndrome virus 1/pathogenicity , Adenosine Diphosphate/analysis , Adenosine Triphosphate/analysis , Animals , Cell Death , Glucose/metabolism , Glucosephosphate Dehydrogenase/metabolism , Lactic Acid/metabolism , Metabolic Networks and Pathways , Mitochondria/metabolism , Plasma/chemistry , Triglycerides/analysis
13.
Mol Biosyst ; 6(5): 830-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20567769

ABSTRACT

A novel quantity called functional correlation was proposed to evaluate functional closeness of a protein with its neighbors in a PPI network. Each unclassified protein was assigned a functional probability distribution which specified the likelihood of an unclassified protein belonged to a specific function group. The functional probability distribution for all unclassified proteins were adjusted iteratively until the functional correlation reached optimum. A function was assigned to an unclassified protein if its corresponding functional probability was higher than a chosen threshold. Our results showed that the functional correlation optimization method (FCOM) is more robust to false protein interactions and insensitive to the amount of known function proteins in a PPI network than other methods. FCOM method can be easily and usefully applied to organisms with rare known function proteins, disease genes, protein complexes, overlapped modular structures prediction and so on.


Subject(s)
Computational Biology/methods , Proteins/metabolism , Animals , Humans , Models, Theoretical , Protein Interaction Mapping , Proteins/chemistry
14.
PLoS One ; 5(5): e10718, 2010 May 19.
Article in English | MEDLINE | ID: mdl-20502662

ABSTRACT

BACKGROUND: Outbreaks of white spot disease have had a large negative economic impact on cultured shrimp worldwide. However, the pathogenesis of the causative virus, WSSV (whit spot syndrome virus), is not yet well understood. WSSV is a large enveloped virus. The WSSV virion has three structural layers surrounding its core DNA: an outer envelope, a tegument and a nucleocapsid. In this study, we investigated the protein-protein interactions of the major WSSV structural proteins, including several envelope and tegument proteins that are known to be involved in the infection process. PRINCIPAL FINDINGS: In the present report, we used coimmunoprecipitation and yeast two-hybrid assays to elucidate and/or confirm all the interactions that occur among the WSSV structural (envelope and tegument) proteins VP51A, VP19, VP24, VP26 and VP28. We found that VP51A interacted directly not only with VP26 but also with VP19 and VP24. VP51A, VP19 and VP24 were also shown to have an affinity for self-interaction. Chemical cross-linking assays showed that these three self-interacting proteins could occur as dimers. CONCLUSIONS: From our present results in conjunction with other previously established interactions we construct a 3D model in which VP24 acts as a core protein that directly associates with VP26, VP28, VP38A, VP51A and WSV010 to form a membrane-associated protein complex. VP19 and VP37 are attached to this complex via association with VP51A and VP28, respectively. Through the VP26-VP51C interaction this envelope complex is anchored to the nucleocapsid, which is made of layers of rings formed by VP664. A 3D model of the nucleocapsid and the surrounding outer membrane is presented.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Viral Structural Proteins/chemistry , Viral Structural Proteins/metabolism , White spot syndrome virus 1/metabolism , Nucleocapsid/chemistry , Nucleocapsid/metabolism , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Reproducibility of Results , White spot syndrome virus 1/ultrastructure
15.
FEBS Lett ; 583(5): 927-32, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-19302794

ABSTRACT

Yeast cell cycle Boolean network was used as a case study of robustness to protein noise. Robustness was interpreted as involving stability of G1 steady state and sequence of gene expression from cell cycle START to stationary G1. A robustness measure to evaluate robustness strength of a network was proposed. Robust putative networks corresponding to the same steady state and sequence of gene expression of wild-type network were sampled. Architecture of wild-type yeast cell cycle network can be revealed by average topology profile of sampled robust putative networks.


Subject(s)
Cell Cycle , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Computer Simulation , Saccharomyces cerevisiae/genetics
16.
Vaccine ; 26(23): 2882-9, 2008 Jun 02.
Article in English | MEDLINE | ID: mdl-18450335

ABSTRACT

Enterovirus 71 (EV71) is the most common etiological agent detected in cases of hand-foot-and-mouth disease (HFMD) resulting in incidences of neurological complications and fatality in recent years. The clinical data have already shown the significant increase in recent EV71 epidemic activity throughout the Asia-Pacific region. Due to the lack of an effective antiviral agent, primary prevention of the disease, including the development of an effective vaccine, has been the top priority in terms of control strategies. In this study, we first generated a transgenic animal system to produce the EV71 VP1 capsid protein under the control of alpha-lactalbumin promoter and alpha-casein leader sequences. A high level of recombinant VP1 protein (2.51 mg/ml) was expressed and secreted into the milk of transgenic mice. Mouse pups that received VP1-transgenic milk orally demonstrated relatively better health conditions after challenge with the respective virus as compared with the non-transgenic milk fed group; moreover, the mice fed with the VP1-milk had body weights similar to those of the PBS placebo control groups. According to the serum-neutralization assay and serum antibody detection, the littermates suckling VP1-milk generated antibodies specific to EV71. Our data suggest that EV71 VP1-containing milk is suitable for development as a potential oral vaccine.


Subject(s)
Enterovirus A, Human/immunology , Enterovirus Infections/immunology , Enterovirus Infections/prevention & control , Milk/chemistry , Viral Vaccines/therapeutic use , Administration, Oral , Aging/immunology , Animals , Antibodies, Viral/analysis , Antibodies, Viral/biosynthesis , Capsid Proteins/genetics , Capsid Proteins/immunology , Child, Preschool , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Enzyme-Linked Immunosorbent Assay , Female , Genotype , Humans , Immunoblotting , Lactalbumin/genetics , Mice , Mice, Inbred ICR , Mice, Transgenic , Neutralization Tests , Promoter Regions, Genetic/genetics , Viral Fusion Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...