Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077190

ABSTRACT

Since the beginning of the 21st century, humans have experienced three coronavirus pandemics, all of which were transmitted to humans via animals. Recent studies have found that porcine deltacoronavirus (PDCoV) can infect humans, so swine enteric coronavirus (SeCoV) may cause harm through cross-species transmission. Transmissible gastroenteritis virus (TGEV) and PDCoV have caused tremendous damage and loss to the pig industry around the world. Therefore, we analyzed the genome sequence data of these two SeCoVs by evolutionary dynamics and phylogeography, revealing the genetic diversity and spatiotemporal distribution characteristics. Maximum likelihood and Bayesian inference analysis showed that TGEV could be divided into two different genotypes, and PDCoV could be divided into four main lineages. Based on the analysis results inferred by phylogeography, we inferred that TGEV might originate from America, PDCoV might originate from Asia, and different migration events had different migration rates. In addition, we also identified positive selection sites of spike protein in TGEV and PDCoV, indicating that the above sites play an essential role in promoting membrane fusion to achieve adaptive evolution. In a word, TGEV and PDCoV are the past and future of SeCoV, and the relatively smooth transmission rate of TGEV and the increasing transmission events of PDCoV are their respective transmission characteristics. Our results provide new insights into the evolutionary characteristics and transmission diversity of these SeCoVs, highlighting the potential for cross-species transmission of SeCoV and the importance of enhanced surveillance and biosecurity measures for SeCoV in the context of the COVID-19 epidemic.


Subject(s)
COVID-19 , Swine Diseases , Transmissible gastroenteritis virus , Animals , Bayes Theorem , Deltacoronavirus , Humans , Phylogeography , Swine , Swine Diseases/epidemiology , Transmissible gastroenteritis virus/genetics
2.
Viruses ; 14(8)2022 08 18.
Article in English | MEDLINE | ID: mdl-36016432

ABSTRACT

Foot-and-mouth disease virus (FMDV) is a highly contagious and devastating virus that infects cloven-hoofed livestock and various wildlife species. Vaccination is the best measure to prevent FMD. ADDomer, as a kind of non-infectious adenovirus-inspired nanoparticle, has the advantage of high thermal stability. In this study, two dominant B-cell antigen epitopes (residues 129~160 and 200~213) and a dominant T-cell antigen epitope (residues 16~44) of type O FMDV were inserted into the ADDomer variable loop (VL) and arginine-glycine-aspartic acid (RGD) loop. The 3D structure of the recombinant protein (ADDomer-RBT) was simulated by homology modeling. First, the recombinant proteins were expressed by the baculovirus expression system and detected by western blot and Q Exactive mass spectrometry. Then the formation of VLPs was observed under a transmission electron micrograph (TEM). Finally, we evaluated the immunogenicity of chimeric VLPs with a murine model. Bioinformatic software analysis preliminarily corroborated that the chosen epitopes were successfully exposed on the surface of ADDomer VLPs. The TEM assay demonstrated the structural integrity of the VLPs. After immunizing, it was found that FMDV-specific antibodies can be produced in mice to induce humoral and cellular immune responses. To sum up, the ADDomer platform can be used as an effective antigen carrier to deliver antigen epitopes. This study presents one of the candidate vaccines to prevent and control FMDV.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins/genetics , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Foot-and-Mouth Disease Virus/genetics , Mice , Viral Vaccines/genetics
3.
Cancer Cell Int ; 19: 252, 2019.
Article in English | MEDLINE | ID: mdl-31582908

ABSTRACT

BACKGROUND: Circular RNA (circRNA) CDR1as plays an important role in the occurrence and development of human tumors. The purpose of this study is to investigate the molecular mechanism of circRNA CDR1as in the development of nasopharyngeal carcinoma (NPC). METHODS: The mRNA expressions of circRNA CDR1as, miR-7-5p, and E2F3 were detected by qRT-PCR. The effects of circRNA CDR1as, miR-7-5p, and E2F3 on NPC cells were investigated using cell counting kit-8 (CCK8) method, colony formation assay, and representative metabolite assay. The molecular mechanism of circRNA CDR1 in NPC was studied by bioinformatics and luciferase reporter assay. In addition, the biological activity of circRNA CDR1as was also investigated in NPC xenograft tumor mice model. RESULTS: The results showed that the circRNA CDR1as expression was significantly up-regulated in NPC tissues by comparison with non-tumor NPE tissues (p < 0.01), suggesting that circRNA CDR1as was associated with poor prognosis in NPC patients. Moreover, circRNA CDR1as could up-regulate E2F3 expression by binding miR-7-5p, and promote the growth and glucose metabolism of NPC cells. Meanwhile, circRNA CDR1as could promote NPC progression through the negative regulation of miR-7-5p in the xenograft tumor model. CONCLUSION: CircRNA CDR1as promoted the occurrence and development of NPCs by successively up-regulating the expression of miR-7-5p and E2F3, suggesting CircRNA CDR1as as a potential target for the treatment of NPC patients.Trial registration The study was approved by the cancer center's institutional research ethics committee on Oct 18, 2008 (2008GZ2847462).

4.
Environ Pollut ; 251: 885-891, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31234254

ABSTRACT

Guangdong Province, which is located in southern China, has a tropical climate with high temperatures and humidity, making it extremely unfavourable for the corrosion resistance of various materials. Meanwhile, as a quickly developing region in China, Guangdong Province is also facing multi-pollutant conditions, which seriously affect the atmospheric degradation of the materials in this region. It is therefore necessary to identify the key air pollutants that affect the atmospheric corrosivity of Guangdong Province and to propose targets of air pollutant control. An analysis of the environmental data and corrosion rates in Guangdong Province showed that the atmospheric corrosivity of the entire region is closely related to the presence of sulfur dioxide (SO2) and ozone (O3). In addition, a superposition model was utilised to reflect the synergistic effect of SO2 and O3, and a superimposed map of both pollutants was drawn to demonstrate their amount. To control the corrosion rate of carbon steel and avoid exceeding the C2 classification in ISO 9223, the following targets of air pollutant control are proposed: an SO2 concentration of lower than 10 µg m-3 and an O3 level of lower than 85 µg m-3.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Ozone/analysis , Sulfur Dioxide/analysis , China , Corrosion , Hot Temperature , Humidity , Nitrogen Dioxide/analysis , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...