Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 735, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272886

ABSTRACT

Drug-eluting stent implantation suppresses the excessive proliferation of smooth muscle cells to reduce in-stent restenosis. However, the efficacy of drug-eluting stents remains limited due to delayed reendothelialization, impaired intimal remodeling, and potentially increased late restenosis. Here, we show that a drug-free coating formulation functionalized with tailored recombinant humanized type III collagen exerts one-produces-multi effects in response to injured tissue following stent implantation. We demonstrate that the one-produces-multi coating possesses anticoagulation, anti-inflammatory, and intimal hyperplasia suppression properties. We perform transcriptome analysis to indicate that the drug-free coating favors the endothelialization process and induces the conversion of smooth muscle cells to a contractile phenotype. We find that compared to drug-eluting stents, our drug-free stent reduces in-stent restenosis in rabbit and porcine models and improves vascular neointimal healing in a rabbit model. Collectively, the one-produces-multi drug-free system represents a promising strategy for the next-generation of stents.


Subject(s)
Coronary Restenosis , Drug-Eluting Stents , Swine , Animals , Rabbits , Coronary Restenosis/prevention & control , Stents , Collagen , Wound Healing
2.
J Mater Chem B ; 11(38): 9260-9275, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37724634

ABSTRACT

Almost all commercial bioprosthetic heart valves (BHVs) are crosslinked with glutaraldehyde (GLUT); however, issues such as immune responses, calcification, delayed endothelialization, and especially severe thrombosis threaten the service lifespan of BHVs. Surface modification is expected to impart GLUT-crosslinked BHVs with versatility to optimize service performance. Here, a postfunctionalization strategy was established for GLUT-crosslinked BHVs, which were firstly modified with metal-phenolic networks (MPNs) to shield the exposed calcification site, and then anticoagulant recombinant humanized type III collagen (rhCOLIII) was immobilized to endow them with long-term antithrombogenicity and enhanced endothelialization properties. The postfunctionalization coating exhibited promising mechanical properties and resistance to enzymatic degradation capability resembling that of GLUT-crosslinked porcine pericardium (GLUT-PP). With the introduction of meticulously tailored rhCOLIII, the anti-coagulation and re-endothelialization properties of TA/Fe-rhCOLIII were significantly improved. Furthermore, the mild inflammatory response and reduced calcification were evidenced in TA/Fe-rhCOLIII by subcutaneous implantation. In conclusion, the efficacy of the proposed strategy combining anti-inflammatory MPNs and multifunctional rhCOLIII to improve anticoagulation, reduce the inflammatory response, and ultimately achieve rapid reendothelialization was supported by both ex vivo and in vivo experiments. Altogether, the current findings may provide a simple strategy for enhancing the service function of BHVs after implantation and show great potential in clinical applications.


Subject(s)
Calcinosis , Heart Valve Prosthesis , Animals , Swine , Polyphenols , Collagen Type III , Anticoagulants/pharmacology , Glutaral
SELECTION OF CITATIONS
SEARCH DETAIL
...