Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732090

ABSTRACT

Meox1 is a critical transcription factor that plays a pivotal role in embryogenesis and muscle development. It has been established as a marker gene for growth-specific muscle stem cells in zebrafish. In this study, we identified the SsMeox1 gene in a large teleost fish, Sebastes schlegelii. Through in situ hybridization and histological analysis, we discovered that SsMeox1 can be employed as a specific marker of growth-specific muscle stem cells, which originate from the somite stage and are primarily situated in the external cell layer (ECL) and myosepta, with a minor population distributed among muscle fibers. The knockdown of SsMeox1 resulted in a significant increase in Ccnb1 expression, subsequently promoting cell cycle progression and potentially accelerating the depletion of the stem cell pool, which ultimately led to significant growth retardation. These findings suggest that SsMeox1 arrests the cell cycle of growth-specific muscle stem cells in the G2 phase by suppressing Ccnb1 expression, which is essential for maintaining the stability of the growth-specific muscle stem cell pool. Our study provides significant insights into the molecular mechanisms underlying the indeterminate growth of large teleosts.


Subject(s)
Muscle Development , Animals , Muscle Development/genetics , Cyclin B1/metabolism , Cyclin B1/genetics , Gene Expression Regulation, Developmental , Fish Proteins/genetics , Fish Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Stem Cells/metabolism , Stem Cells/cytology , Cell Cycle/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
2.
Gene ; 802: 145869, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34352298

ABSTRACT

Skeletal myoblasts are activated satellite cells capable of proliferation and differentiation. Studies on mammalian myoblast differentiation and myogenesis could be carried out in vitro thanks to the availability of mouse myoblast cell line C2C12. Lacking of muscle cell line hinders the studies of teleost fish myogenesis. Here, we established a continuous skeletal muscle cell line from juvenile rockfish (Sebastes schlegelii) muscle using explant method and subcultured more than 50 passages for over 150 days. Stable expression of myoblast-specific marker, MyoD (myoblast determination protein) and the potential of differentiation into multi-nucleated skeletal myotubes upon induction suggested the cell line were predominately composed of myoblasts. Transcriptome analysis revealed a total of 4375 genes differentially expressed at four time points after the switch to differentiation medium, which were mainly involved in proliferation and differentiation of myoblasts. KIF22 (kinesin family member 22) and POLA1 (DNA polymerase alpha 1) were identified as the key genes involved in fish myoblast proliferation whereas MYL3 (myosin light chain 3) and TNNT2 (troponin T2) were determined as the crucial genes responsible for differentiation. In all, the continuous myoblasts cultured in this study provided a cell platform for future studies on marine fish myoblast differentiation and myogenesis. The molecular process of myoblast differentiation revealed in this study will open a window into the understanding of indeterminate muscle growth of large teleost.


Subject(s)
Cell Culture Techniques , Cell Line , Muscle Development/genetics , Myoblasts, Skeletal/physiology , Perciformes/anatomy & histology , Animals , Cryopreservation , Transcriptome
3.
Int J Mol Sci ; 22(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916485

ABSTRACT

Pax3 and Pax7 are members of the Pax gene family which are essential for embryo and organ development. Both genes have been proved to be markers of muscle satellite cells and play key roles in the process of muscle growth and repair. Here, we identified two Pax3 genes (SsPax3a and SsPax3b) and two Pax7 genes (SsPax7a and SsPax7b) in a marine teleost, black rockfish (Sebastes schlegelii). Our results showed SsPax3 and SsPax7 marked distinct populations of muscle satellite cells, which originated from the multi-cell stage and somite stage, respectively. In addition, we constructed a muscle injury model to explore the function of these four genes during muscle repair. Hematoxylin-eosin (H-E) of injured muscle sections showed new-formed myofibers occurred at 16 days post-injury (dpi). ISH (in situ hybridization) analysis demonstrated that the expression level of SsPax3a and two SsPax7 genes increased gradually during 0-16 dpi and peaked at 16 dpi. Interestingly, SsPax3b showed no significant differences during the injury repair process, indicating that the satellite cells labeled by SsPax3b were not involved in muscle repair. These results imply that the muscle stem cell populations in teleosts are more complicated than in mammals. This lays the foundation for future studies on the molecular mechanism of indeterminant growth and muscle repair of large fish species.


Subject(s)
Fish Proteins/metabolism , Fishes/metabolism , Muscle, Skeletal/physiology , PAX3 Transcription Factor/metabolism , PAX7 Transcription Factor/metabolism , Regeneration/physiology , Satellite Cells, Skeletal Muscle/metabolism , Animals , Muscle, Skeletal/cytology , Satellite Cells, Skeletal Muscle/cytology
4.
Cell Cycle ; 19(7): 758-771, 2020 04.
Article in English | MEDLINE | ID: mdl-32093567

ABSTRACT

The inhibition of enhancer of zeste homolog 2 (EZH2) has been suggested to be synthetic lethal with polybromo-1 (PBRM1) deficiency, rendering EZH2 to be an attractive target for the treatment of PBRM1 frequently mutated cancers. In the current study, we combined computational and biochemical approaches to establish an efficient system for the screening and validation of synthetic lethal inhibitors from a large pool of chemical compounds. Five putative EZH2 inhibitors were identified through structure-based virtual screening from 47,737 chemical compounds and analyzed with molecular dynamics. The efficacy of these compounds against EZH2 was tested using PBRM1 deficient and wide-type cell lines. The compound L501-1669 selectively inhibited the proliferation of PBRM1-deficient cells and down-regulated the tri-methylation of histone H3 at Lysine 27 (H3K27me3). Importantly, we also observed an increase in apoptotic activities in L501-1669 treated PBRM1-deficient cells. Taken together, our results demonstrate that L501-1669 is a selective EZH2 inhibitor with promising application in the targeted therapy of PBRM1-deficient cancers.


Subject(s)
Apoptosis/genetics , DNA-Binding Proteins/deficiency , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Neoplasms/genetics , Neoplasms/pathology , Synthetic Lethal Mutations/genetics , Transcription Factors/deficiency , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Binding Proteins/metabolism , Drug Screening Assays, Antitumor , Enhancer of Zeste Homolog 2 Protein/chemistry , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/metabolism , Humans , Indoles/pharmacology , Lysine/metabolism , Methylation , Molecular Docking Simulation , Molecular Dynamics Simulation , Prognosis , Pyridones/pharmacology , Reproducibility of Results , Synthetic Lethal Mutations/drug effects , Transcription Factors/metabolism
5.
J Ethnopharmacol ; 261: 112338, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-31669666

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fritillariae cirrhosae (FC), referred to'Chuan beimu'in China. As an important edible and medicinal plant, the bulbs of F.cirrhosae is used traditionally in the treatment of pulmonary diseases associated with lung heat, inflammation and tumors. In the study, we investigated the effect of aqueous extract of FC (FC-AE) and elucidated its mechanism in non-small cell lung cancer A549 cells and a xenograft model of nude mice. MATERIALS AND METHODS: CCK-8 and plate colony formation assay were used to evaluate the effect of FC-AE in A549 cells in vitro, and the gene expression profile of FC-AE on A549 cells was assessed by RNA sequencing system. Then, the effects of FC-AE on cell cycle and apoptosis of A549 cells were analyzed by flow cytometry. In combination with RNA-seq data, RT-PCR and western blot were used to evaluate the expression of proteins related to apoptosis and immune regulation. A xenograft model of nude mice was used to assess the effect of FC-AE in vivo. RESULTS: CCK-8 and plate cloning assays showed that FC-AE inhibited the proliferation and colony formation of A549 cells. A549 cells treated with FC-AE can triggered apoptosis. GO and KEGG pathway enrichment analysis of RNA-seq data showed that most of the differentially expressed genes (DEGs) were related to immune response, apoptosis and cell cycle process. Several immune and apoptotic DEGs were identified by qRT-PCR which were consistented with RNA-seq data. In nude mice, FC-AE reduced the tumor size and promoted the secretion of cytokines IL12 and IFNγ. FC-AE up-regulated the two members (STAT1 and STAT4) of STATs and their target genes (IFNγ and IL-12, respectively) protein expressions, and actively regulates Bcl-2/Bax family proteins which resulted in cellular apoptosis in A549 cells. CONCLUSION: Our finding suggests that FC-AE mediates apoptosis through a STAT1 and STAT4-mediated co-regulatory network, which may be the key novel mechanism for its antitumor activity. The F. cirrhosa may be a promising antitumor drug for modulating immune responses to improve cancer therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Fritillaria , Lung Neoplasms/drug therapy , Plant Extracts/pharmacology , STAT1 Transcription Factor/metabolism , STAT4 Transcription Factor/metabolism , A549 Cells , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Cytokines/genetics , Cytokines/metabolism , Female , Fritillaria/chemistry , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Nude , Plant Extracts/isolation & purification , STAT1 Transcription Factor/genetics , STAT4 Transcription Factor/genetics , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
6.
3 Biotech ; 8(4): 191, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29564202

ABSTRACT

The bulbs of Fritillaria cirrhosa is wildly used in traditional Chinese medicine to treat lung-related disease, which has recently been found to have antitussive, anti-inflammatory, antihypertensive and anti-tumor activity. Steroidal alkaloids are the major effective ingredients of F. cirrhosa. In the current study, we demonstrated an efficient strategy for F. cirrhosa bulb regeneration in vitro by cytokinin/auxin induction. Our data showed that the regenerated bulbs accumulated higher alkaloid content that the wild ones. We further performed RNA-seq and bioinformatics analysis to study the gene expression profile, especially those related to alkaloids biosynthesis. KEGG pathway annotation identified genes related to "Metabolic pathways" were the most abundant (2644, 26.0%), followed by those for "Biosynthesis of secondary metabolites" (1319, 13.0%) among the 113,865 unigenes identified. Further analysis suggested MEP pathway, other than MVA pathway, might be the major route for steroidal alkaloid biosynthesis of F. cirrhosa, as all the key genes in this pathway were found to be unregulated in our study. We also showed that accumulation of different phytochemicals was linked to plant hormone addition. Our current study demonstrated that in vitro cultivation is a promising strategy for mass production of F. cirrhosa steroidal alkaloids for pharmacological industry.

7.
J Hematol Oncol ; 11(1): 22, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29433552

ABSTRACT

Recently, the US Food and Drug Administration (FDA) approved the first chimeric antigen receptor T cell (CAR-T) therapy for the treatment CD19-positive B cell acute lymphoblastic leukemia. While CAR-T has achieved remarkable success in the treatment of hematopoietic malignancies, whether it can benefit solid tumor patients to the same extent is still uncertain. Even though hundreds of clinical trials are undergoing exploring a variety of tumor-associated antigens (TAA), no such antigen with comparable properties like CD19 has yet been identified regarding solid tumors CAR-T immunotherapy. Inefficient T cell trafficking, immunosuppressive tumor microenvironment, suboptimal antigen recognition specificity, and lack of safety control are currently considered as the main obstacles in solid tumor CAR-T therapy. Here, we reviewed the solid tumor CAR-T clinical trials, emphasizing the studies with published results. We further discussed the challenges that CAR-T is facing for solid tumor treatment and proposed potential strategies to improve the efficacy of CAR-T as promising immunotherapy.


Subject(s)
Immunotherapy, Adoptive/methods , Neoplasms/therapy , Animals , Antigens, Neoplasm/immunology , Clinical Trials as Topic , Humans , Immunotherapy, Adoptive/adverse effects , Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Treatment Outcome , Tumor Microenvironment
8.
RSC Adv ; 8(34): 18859-18869, 2018 May 22.
Article in English | MEDLINE | ID: mdl-35539677

ABSTRACT

Maintenance of genomic integrity is essential for the survival of all organisms. Homologous recombination (HR) is the major pathway for high-fidelity repair of DNA double-stranded breaks (DSBs). In addition to the classic BRCA-RAD51 pathway, another secondary HR sub-pathway dependent on RAD52 has been suggested to be functioning in mammalian cells. Importantly, RAD52 has been shown to be synthetically lethal to BRCA1/2-deficient cells, rendering RAD52 to be a desirable target in cancer therapy. In the current study, we performed a structure-based virtual screening of 47 737 drug-like compounds to identify RAD52-specific inhibitors. The top ranked virtual screening hits were further characterized using molecular dynamics simulation and biochemical and cell-based assays. We found that one compound, namely, F779-0434 specifically suppressed the growth of BRCA2-deficient cells and disrupted RAD52-ssDNA interaction in vitro. This RAD52-specific inhibitor identified in the current study is a promising compound for targeted cancer therapy, and it can also be used as a probe to study the mechanisms of DNA repair in human cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...