Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 20(3): 763-778, 2025 Mar 01.
Article in English | MEDLINE | ID: mdl-38886941

ABSTRACT

Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.

2.
Metab Brain Dis ; 38(7): 2443-2456, 2023 10.
Article in English | MEDLINE | ID: mdl-37382831

ABSTRACT

Neuroinflammation is a critical feature in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). Hesperetin can exert anti-inflammatory, antioxidant and other neuroprotective effects. In this study, the scopolamine (SCOP)-induced cognitive dysfunction in mice model was used to evaluate the neuroprotective effects of hesperetin. Behavioral tests (Morris water maze, open field, and novel object recognition tests) were conducted to evaluate the effect of hesperetin on cognitive dysfunction behaviors. Nissl staining and Immunofluorescence were used to evaluate hippocampal neuronal damage and microglial activation in mice. The levels of proinflammatory factors, oxidant stress, and the cholinergic neurotransmitter were detected by real-time quantitative fluorescence PCR (RT-qPCR) or biochemical reagent kits. Western blotting was used to detect the relative protein expression of the sirtuin 6 (SIRT6) / NOD-like receptor thermal protein domain associated protein 3 (NLRP3) pathway. Results showed that hesperetin could ameliorate SCOP-induced cognitive impairment and neuronal damage, and regulate the levels of cholinergic neurotransmitters in the hippocampal of AD mice. Hesperetin could also enhance antioxidant defense by regulating the levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT). Hesperetin exerted anti-neuroinflammation effects through inhibiting of microglia activation and down-regulating the mRNA transcript levels of inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Meanwhile, hesperetin could attenuate the expression of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), thioredoxin-interacting protein (TXNIP), and caspase-1 p20 and upregulate the expression of SIRT6 in SCOP-induced mice. Overall, our study suggested that hesperetin might ameliorate SCOP-induced cognitive dysfunction by improving cholinergic system dysfunction and suppressing oxidative stress and attenuating neuroinflammation via SIRT6/NLRP3 pathway in mice.


Subject(s)
Cognitive Dysfunction , Neuroprotective Agents , Sirtuins , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Antioxidants , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Scopolamine , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...