Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(23): 25277-25282, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882064

ABSTRACT

High channel current of the high electron mobility transistors (HEMTs) and high relative responsivity of the photodetectors (PDs) were demonstrated in the AlGaN/AlN/GaN channel-stacking epitaxial structures. The interference properties of the X-ray curves indicated high-quality interfaces of the conductive channels. The AlGaN/AlN/GaN interfaces were observed clearly in the transmission electron microscope micrograph. The saturation I ds currents of the HEMT structures were increased by adding a number of channels. The conductive properties of the channel-stacking structures corresponded to the peaks of the transconductance (g m) spectra in the HEMT structures. The depletion-mode one- and two-channel HEMT structures can be operated at the cutoff region by increasing the reverse V gs bias voltages. Higher I ds current in the active state and lower current in the cutoff state were observed in the two-channel HEMT structure compared with one- and three-channel HEMT structures. For the channel-stacking metal-semiconductor-metal photodetector structures, the peak responsivity was observed at almost 300 nm incident monochromic light, which was increased by adding a number of channel layers. The channel current of the HEMT devices and the photocurrent in the PD devices were increased by adding a number of two-dimensional electron gas (2DEG) channels. By using a flat gate metal layer, the two-channel AlGaN/AlN/GaN HEMT structures exhibited a high I ds current, a low cutoff current, and a high peak g m value and have the potential for GaN-based power devices, fast portable chargers, and ultraviolet PD applications.

2.
Sci Rep ; 6: 29138, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27363290

ABSTRACT

InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n(+)-GaN) in the 12-period n(+)-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface.

3.
Opt Express ; 19 Suppl 1: A57-63, 2011 Jan 03.
Article in English | MEDLINE | ID: mdl-21263713

ABSTRACT

The conical air-void structure of an InGaN light-emitting diode (LEDs) was formed at the GaN/sapphire interface to increase the light extraction efficiency. The fabrication process of the conical air-void structure consisted of a dry process and a crystallographic wet etching process on an undoped GaN layer, followed by a re-growth process for the InGaN LED structure. A higher light output power (1.54 times) and a small divergent angle (120°) were observed, at a 20 mA operation current, on the treated LED structure when compared to a standard LED without the conical air-void structure. In this electroluminescence spectrum, the emission intensity and the peak wavelength varied periodically by corresponding to the conical air-void patterns that were measured through a 100 nm-optical-aperture fiber probe. The conical air-void structure reduced the compressed strain at the GaN/sapphire interface by inducing the wavelength blueshift phenomenon and the higher internal quantum efficiency of the photoluminescence spectra for the treated LED structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...