Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Endothelium ; 13(3): 171-80, 2006.
Article in English | MEDLINE | ID: mdl-16840173

ABSTRACT

Vascular endothelial cells (ECs) are constantly exposed to blood flow-induced shear stress; these forces strongly influence the behaviors of neighboring vascular smooth muscle cells (VSMCs). VSMC migration is a key event in vascular wall remodeling. In this study, the authors assessed the difference between VSMC migration in VSMC/EC coculture under static and shear stress conditions. Utilizing a parallel-plate coculture flow chamber system and Transwell migration assays, they demonstrated that human ECs cocultured with VSMCs under static conditions induced VSMC migration, whereas laminar shear stress (1.5 Pa, 15 dynes/cm2) applied to the EC side for 12 h significantly inhibited this process. The changes in VSMC migration is mainly dependent on the close interactions between ECs and VSMCs. Western blotting showed that there was a consistent correlation between the level of Akt phosphorylation and the efficacy of shear stress-mediated EC regulation of VSMC migration. Wortmannin and Akti significantly inhibited the EC-induced effect on VSMC Akt phosphorylation and migration. These results indicate that shear stress protects against endothelial regulation of VSMC migration, which may be an atheroprotective function on the vessel wall.


Subject(s)
Cell Movement , Endothelial Cells/cytology , Muscle, Smooth, Vascular/cytology , Stress, Mechanical , Umbilical Veins/cytology , Cell Communication , Coculture Techniques/methods , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...