Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853468

ABSTRACT

BACKGROUND AND PURPOSE: Airway epithelial cells (AECs) regulate the activation of epithelial-mesenchymal trophic units (EMTUs) during airway remodelling through secretion of signalling mediators. However, the major trigger and the intrinsic pathogenesis of airway remodelling is still obscure. EXPERIMENTAL APPROACH: The differing expressed genes in airway epithelia related to airway remodelling were screened and verified by RNA-sequencing and signalling pathway analysis. Then, the effects of increased cathepsin K (CTSK) in airway epithelia on airway remodelling and EMTU activation were identified both in vitro and in vivo, and the molecular mechanism was elucidated in the EMTU model. The potential of CTSK as an an effective biomarker of airway remodelling was analysed in an asthma cohort of differing severity. Finally, an inhibitor of CTSK was administered for potential therapeutic intervention for airway remodelling in asthma. KEY RESULTS: The expression of CTSK in airway epithelia increased significantly along with the development of airway remodelling in a house dust mite (HDM)-stressed asthma model. Increased secretion of CTSK from airway epithelia induced the activation of EMTUs by activation of the PAR2-mediated pathway. Blockade of CTSK inhibited EMTU activation and alleviated airway remodelling as an effective intervention target of airway remodelling. CONCLUSION AND IMPLICATIONS: Increased expression of CTSK in airway epithelia is involved in the development of airway remodelling in asthma through EMTU activation, mediated partly through the PAR2-mediated signalling pathway. CTSK is a potential biomarker for airway remodelling, and may also be a useful intervention target for airway remodelling in asthma patients.

2.
Life Sci Alliance ; 6(1)2023 01.
Article in English | MEDLINE | ID: mdl-36368908

ABSTRACT

A fluid membrane containing a mix of unsaturated and saturated lipids is essential for life. However, it is unclear how lipid saturation might affect lipid homeostasis, membrane-associated proteins, and membrane organelles. Here, we generate temperature-sensitive mutants of the sole fatty acid desaturase gene OLE1 in the budding yeast Saccharomyces cerevisiae Using these mutants, we show that lipid saturation triggers the endoplasmic reticulum-associated degradation (ERAD) of squalene epoxidase Erg1, a rate-limiting enzyme in sterol biosynthesis, via the E3 ligase Doa10-Ubc7 complex. We identify the P469L mutation that abolishes the lipid saturation-induced ERAD of Erg1. Overexpressed WT or stable Erg1 mutants all mislocalize into foci in the ole1 mutant, whereas the stable Erg1 causes aberrant ER and severely compromises the growth of ole1, which are recapitulated by doa10 deletion. The toxicity of the stable Erg1 and doa10 deletion is due to the accumulation of lanosterol and misfolded proteins in ole1 Our study identifies Erg1 as a novel lipid saturation-regulated ERAD target, manifesting a close link between lipid homeostasis and proteostasis that maintains sterol homeostasis under the lipid saturation condition for cell survival.


Subject(s)
Saccharomyces cerevisiae Proteins , Squalene Monooxygenase , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Cell Survival , Endoplasmic Reticulum-Associated Degradation , Saccharomyces cerevisiae/metabolism , Homeostasis , Sterols/metabolism , Lipids
3.
Development ; 147(20)2020 10 16.
Article in English | MEDLINE | ID: mdl-32820022

ABSTRACT

Seipin, an evolutionary conserved protein, plays pivotal roles during lipid droplet (LD) biogenesis and is associated with various human diseases with unclear mechanisms. Here, we analyzed Caenorhabditis elegans mutants deleted of the sole SEIPIN gene, seip-1 Homozygous seip-1 mutants displayed penetrant embryonic lethality, which is caused by the disruption of the lipid-rich permeability barrier, the innermost layer of the C. elegans embryonic eggshell. In C. elegans oocytes and embryos, SEIP-1 is associated with LDs and is crucial for controlling LD size and lipid homeostasis. The seip-1 deletion mutants reduced the ratio of polyunsaturated fatty acids (PUFAs) in their embryonic fatty acid pool. Interestingly, dietary supplementation of selected n-6 PUFAs rescued the embryonic lethality and defective permeability barrier. Accordingly, we propose that SEIP-1 may maternally regulate LD biogenesis and lipid homeostasis to orchestrate the formation of the permeability barrier for eggshell synthesis during embryogenesis. A lipodystrophy allele of seip-1 resulted in embryonic lethality as well and could be rescued by PUFA supplementation. These experiments support a great potential for using C. elegans to model SEIPIN-associated human diseases.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Egg Shell/embryology , Genes, Helminth , Membrane Proteins/genetics , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/metabolism , Dietary Supplements , Disease Models, Animal , Egg Shell/drug effects , Egg Shell/ultrastructure , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/ultrastructure , Fatty Acids, Unsaturated/pharmacology , Fertilization , Gene Deletion , Gene Expression Regulation, Developmental/drug effects , Humans , Lipid Droplets/metabolism , Lipid Droplets/ultrastructure , Lipidomics , Membrane Proteins/metabolism , Mutation/genetics , Oocytes/drug effects , Oocytes/metabolism , Oocytes/ultrastructure , Ovulation/drug effects , Permeability , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...