Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36433097

ABSTRACT

Seawater and sea sand are used in concrete to reduce the consumption of freshwater and river sand. To improve the mechanical properties and cracking resistance of concrete, polymer fiber is commonly used. In this study, polyoxymethylene (POM) fiber was innovatively applied to seawater sea-sand concrete (SWSSC), and the workability, early-age cracking behavior, and mechanical properties of SWSSC reinforced with POM fiber were investigated experimentally. A total of 6 kinds of SWSSC mixtures and 72 specimens were included. The test results indicated that with increases in fiber volume fractions (ρ), the workability of SWSSC decreased correspondingly. Compared with plain SWSSC, for SWSSC with ρ = 1%, the decreases in slump and expansibility were 110.6 and 91.9 mm, respectively. POM fiber had a significant enhancing effect on the early-age cracking resistance of SWSSC. Compared with those of plain SWSSC, the cracking indices ac, bc, and cc of the POM-1 specimen decreased by 77.0%, 89.4%, and 97.6%, respectively. Cube and axial compressive tests, splitting tensile tests, and flexural tests were conducted to clarify the effects of POM fiber on the mechanical properties of SWSSC. Compared with plain SWSSC, SWSSC with POM fiber performed better in terms of mechanical properties. Predictive equations were proposed to quantify the effects of POM fiber on the mechanical properties of SWSSC. The failure performances of the SWSSC specimens were discussed and their complete stress-strain curve was analyzed. A stress-strain model for SWSSC was suggested. According to the model, the complete stress-strain curve of SWSSC with any POM fiber content could be determined.

2.
Materials (Basel) ; 15(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36431562

ABSTRACT

A new S600E sorbite stainless steel (SS), which performs outstanding mechanical properties, was introduced in a plate girder to enhance the resistant performance and durability. The resistance from the flange for S600E sorbite SS plate girders developing post-buckling capacity was investigated through numerical analyses, which included the material and geometrical nonlinearity. The value of distance between plastic hinges performed significant effects on resistance from flange. There was a certain distribution range of the flange plastic hinge. Hence, it was difficult to determine the value of distance between plastic hinges accurately based merely on the failure behavior. Considering the theoretical basis of EN 1993-1-4: 2006+A1, the new methods to obtain resistance from the flange and determine the value of distance between the plastic hinges were proposed to avoid the aforementioned error. The parametric study was conducted to investigate the effect of key parameters on the resistance from the flange. To take the above effect into account, a correction factor was proposed for the design equation in EN 1993-1-4: 2006+A1 to predict the distance between flange plastic hinges accurately. The comparison was conducted to validate the accuracy of the proposed equations. The results indicated that the new modified equation could be used to predict the resistance from the flange of the S600E sorbite SS plate girder more accurately.

3.
Materials (Basel) ; 15(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35629760

ABSTRACT

The risk of cracking in the early stage is a critical indicator of the performance of concrete structures. Concrete cracked when the tensile stresses caused by deformation under restraint conditions exceeded its tensile strength. This research aims at an accurate prediction of shrinkage cracking of concrete under constraints. Based on the theory of capillary tension under the concrete shrinkage mechanism, the method to test and compute the elastic modulus of a micro-matrix around the capillary, Et, was derived. Shrinkage and porosity determination tests were conducted to obtain the shrinkage values and confining stresses of concrete at different strength grades, different ages and under different restraint conditions, accordingly. Meanwhile, the proposed method of this research was used to obtain Et. The restraint stress given by Et was compared with the experimental result under the corresponding time. The results suggested a positive correlation between the elastic modulus of a micro-matrix around the capillary, Et, precomputed by the theory, and the static elastic modulus, Ec, and that the ratio between the two gradually decreased with the passage of time, which ranged from 2.8 to 3.1.

4.
Materials (Basel) ; 13(3)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32024190

ABSTRACT

In this research, the influence of reinforcement bars on concrete pore structure and compressive strength was experimentally investigated. Concrete samples with two mixture ratios and nine reinforcement ratios were provided. Tests were conducted on concrete pore structure and compressive strength at three ages (3 d, 7 d, and 28 d). It was found that reinforcement bars changed the concrete pore structure. In terms of size, the pore structure of concrete increased with the increase of reinforcement ratio. At the same age, concrete compressive strength in reinforced concrete specimens saw a gradual reduction when reinforcement ratio increased. A formula was proposed to calculate the compressive strength of concrete in reinforced specimens according to the strength of unreinforced concrete.

5.
Materials (Basel) ; 13(3)2020 Jan 27.
Article in English | MEDLINE | ID: mdl-32012764

ABSTRACT

Graphene oxide (GO) has been widely used as an additive due to its numerous unique properties. In this study, the compressive strength, flexural strength and elasticity modulus of concrete containing 0.02 wt%, 0.05 wt % and 0.08 wt % GO, and its dry shrinkage performance have been experimentally investigated. After the sample preparation, apparatus for compression test and flexural test were used to test the relevant properties of concrete containing GO. The dial indicators were used to measure the shrinkage of samples. The results indicate that GO can considerably improve the compressive strength, flexural strength, and elasticity modulus of concrete at the concrete age of 28 days by 4.04-12.65%, 3.8-7.38%, and 3.92-10.97%, respectively, which are substantially smaller than the increment at the age of 3 d by 5.02-21.51%, 4.25-13.06%, and 6.07-27.45% under a water-cement ratio of 0.35. It was also found that GO can increase the shrinkage strain of concrete. For example, at the age of 60 days, 0.02 wt%, 0.05 wt% and 0.08 wt% GO can increase the shrinkage strain of ordinary concrete by 1.99%, 5.79% and 7.45% respectively under a water-cement ratio of 0.49. The study has advanced our understanding on mechanical and shrinkage behavior of concrete containing GO.

6.
Materials (Basel) ; 12(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561593

ABSTRACT

In this study, the shrinkage and creep of concrete containing graphene oxide (GO) nanosheets were experimentally and theoretically investigated. Experiments for the shrinkage and creep of concrete with 0.02% and 0.08% GO nanosheets by the weight of cement and common concrete were carried out. Subsequently, the influence of GO nanosheets on the shrinkage and creep of concrete was analyzed and discussed. A modified model was developed to accurately predict the shrinkage and creep of concrete containing GO nanosheets after models for predicting shrinkage and creep of common concrete were compared and the influential factors and application scope were determined. Results indicate that: (1) GO nanosheets can increase the shrinkage strain and reduce the creep coefficient of concrete, and (2) a modified ACI209 (92) model can accurately predict the shrinkage and creep of concrete containing GO nanosheets. Factors considering concrete strength can be introduced in the model to improve the model accuracy.

7.
Materials (Basel) ; 12(3)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678260

ABSTRACT

To help designers develop solutions to overcome the cracking problem in steel-plate-reinforced concrete composite shear walls due to the concrete shrinkage, the influence of steel plates and studs on the shrinkage behavior of high-performance concrete (HPC), including restrained shrinkage strain, shrinkage strain gradient, and cracking potential, were theoretically and experimentally investigated in this study. A model for theoretical analysis was used to research the shrinkage performance of concrete that was restrained by steel plates and studs. The major parameters involved in the experiments include the thickness and material elastic modulus of the steel plate, in addition to the diameter, height, and number of studs. It was found that the shrinkage of HPC decreases and its potential cracking increases with the increase of thickness and elastic modulus of the steel plate, and the diameter, height, and number of studs. The restraining effect of the steel plate and stud on the HPC shrinkage decreases with the distance of their respective locations. It demonstrates that the HPC near a steel plate and stud is prone to crack compared with that far away from the steel plate and stud. This potential could be reduced by uniformly restraining the HPC.

SELECTION OF CITATIONS
SEARCH DETAIL
...