Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 240
Filter
2.
Eur J Pharmacol ; 983: 176824, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39265882

ABSTRACT

Intimal hyperplasia (IH) is an innegligible issue for patients undergoing interventional therapy. The proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF-BB) are critical events in the development of IH. While the exact mechanism and effective target for IH needs further investigation. Metabolic disorders of arachidonic acid (ARA) are involved in the occurrence and progression of various diseases. In this study, we found that the expressions of soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) were significantly increased in the VSMCs during balloon injury-induced IH. Then, we employed a COX-2/sEH dual inhibitor PTUPB to increase the concentration of epoxyeicosatrienoic acids (EETs) while prevent the release of pro-inflammatory prostaglandins. Results showed that PTUPB treatment significantly reduced neointimal thickening induced by balloon injury in rats in vivo and inhibited PDGF-BB-induced proliferation and migration of VSMCs in vitro. Our results showed that PTUPB may reverse the phenotypic transition of VSMCs by inhibiting Pttg1 expression. In conclusion, we found that the dysfunction of ARA metabolism in VSMCs contributes to IH, and the COX-2/sEH dual inhibitor PTUPB attenuates IH progression by reversing the phenotypic switch in VSMC through the Sirt1/Pttg1 pathway.


Subject(s)
Cell Movement , Cell Proliferation , Cyclooxygenase 2 , Epoxide Hydrolases , Hyperplasia , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Rats, Sprague-Dawley , Animals , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Male , Rats , Cyclooxygenase 2/metabolism , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cell Movement/drug effects , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Tunica Intima/pathology , Tunica Intima/metabolism , Tunica Intima/drug effects , Becaplermin/pharmacology , Neointima/pathology , Neointima/metabolism , Neointima/drug therapy , Metabolic Diseases/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/pathology
3.
Front Pharmacol ; 15: 1375769, 2024.
Article in English | MEDLINE | ID: mdl-39281274

ABSTRACT

Background: Immune checkpoint blockade (ICB)-based immunotherapy has inspired new hope for advanced biliary tract cancer (BTC) treatment; however, there are no prior studies that primarily focus on different anatomical types of unresectable BTCs reacting differently to ICB. Methods: We retrospectively collected data on advanced BTC patients who received anti-programmed cell death protein 1 (anti-PD1) therapy from two affiliated hospitals of Sun Yat-Sen university. The effects of anti-PD1 were compared for different anatomical sites. The GSE32225 and GSE132305 datasets were used to further analyze differences in the immune microenvironments between intrahepatic cholangiocarcinoma (ICC) and extrahepatic cholangiocarcinoma (ECC). Results: A total of 198 advanced BTC patients were enrolled in this study, comprising 142 patients with ICC and 56 with other cancer types ("Others" group), including ECC and gallbladder cancer. In the anti-PD1 treated patients, the ICC group (n = 90) achieved longer median progression-free survival (mPFS) (9.5 vs. 6.2 months, p = 0.02) and median overall survival (mOS) (15.1 vs. 10.7 months, p = 0.02) than the Others group (n = 26). However, chemotherapy did not show different effects between the two groups (mOS: 10.6 vs. 12.1 months, p = 0.20; mPFS: 4.9 vs. 5.7 months, p = 0.83). For the first-line anti-PD1 therapy, the ICC group (n = 70) achieved higher mOS (16.0 vs. 11.8 months, p = 0.04) than the Others group (n = 19). Moreover, most chemokines, chemokine receptors, major histocompatibility complex molecules, immunostimulators, and immunoinhibitors were stronger in ICC than ECC; furthermore, CD8+ T cells and M1 macrophages were higher in ICC than ECC for most algorithms. The immune differential genes were mainly enriched in antigen processing and presentation as well as the cytokine receptors. Conclusions: This study shows that the efficacy of anti-PD1 therapy was higher in ICC than in other types of BTCs. Differences in the immune-related molecules and cells between ICC and ECC indicate that ICC could benefit more from immunotherapy.

4.
Sci Total Environ ; 954: 176347, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306135

ABSTRACT

Antimicrobial resistance (AMR) in gram-negative bacteria (GNBs) is a significant global health concern, exacerbated by mobile genetic elements (MGEs). This review examines the transfer of antibiotic resistance genes (ARGs) within and between different species of GNB facilitated by MGEs, focusing on the roles of plasmids and phages. The impact of non-antibiotic chemicals, environmental factors affecting ARG transfer frequency, and underlying molecular mechanisms of bacterial resistance evolution are also discussed. Additionally, the study critically assesses the impact of fitness costs and compensatory evolution driven by MGEs in host organisms, shedding light on the transfer frequency of ARGs and host evolution within ecosystems. Overall, this comprehensive review highlights the factors and mechanisms influencing ARG movement among diverse GNB species and underscores the importance of implementing holistic One-Health strategies to effectively address the escalating public health challenges associated with AMR.

5.
Technol Cancer Res Treat ; 23: 15330338241273286, 2024.
Article in English | MEDLINE | ID: mdl-39110075

ABSTRACT

Background: Immune checkpoint inhibitor (ICI) plus chemotherapy is effective in advanced gastric or gastroesophageal junction (G/GEJ) cancer. This study aims to evaluate the clinical effect of first-line immunotherapy in combination with chemotherapy for advanced G/GEJ cancer. Methods: PubMed, Web of Science, Embase and Cochrane databases were systematically searched from the inception of the databases to December 2021. Randomized trials comparing ICI plus chemotherapy with chemotherapy in first-line treatment for advanced G/GEJ cancer were included. The outcomes were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and adverse events (AEs). Analyses were performed in Stata 14.0 software. The study protocol was registered with PROSPERO, number CRD42022300907. Results: Five trials were included for analysis, involving 2, 814 patients. ICI plus chemotherapy can significantly improve OS (hazards ratio [HR], 0.86; 95% CI 0.78-0.94; P = .002), PFS (HR, 0.79; 95% CI 0.63-0.99; P < .001) and ORR (relative ratio [RR], 1.20; 95% CI 1.11-1.30; P < .001). In safety analyses, there were no significant differences in incidence of all AEs, treatment-related adverse event (TRAE), TRAE of grade 3 or higher, serious TRAE and TRAE leading to death between two arms (P > .05). Conclusions: ICI plus chemotherapy is more effective first-line treatment for advanced G/GEJ cancer in contrast to chemotherapy regrading to improving OS, PFS and ORR, without increasing TRAE risk. This study will redefine the role of ICI in combination with chemotherapy in the first-line setting for G/GEJ cancer, and provide reference for clinical treatment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophagogastric Junction , Immune Checkpoint Inhibitors , Stomach Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Esophagogastric Junction/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/mortality , Treatment Outcome , Neoplasm Staging
7.
Small Methods ; : e2400323, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940224

ABSTRACT

The graphene oxide (GO) membrane displays promising potential in efficiently filtering ions from water. However, the precise mechanism behind its effectiveness remains elusive, particularly due to the lack of direct experimental evidence at the atomic scale. To shed light on this matter, state-of-the-art techniques are employed such as integrated differential phase contrast-scanning transmission electron microscopy and electron energy loss spectroscopy, combined with reverse osmosis (RO) filtration experiments using GO membranes. The atomic-scale observations after the RO experiments directly reveal the binding of various ions including Na+, K+, Ca2+, and Fe3+ to the defects, edges, and functional groups of GO. The remarkable ion-sieving capabilities of GO membranes are confirmed, which can be attributed to a synergistic interplay of size exclusion, electrostatic interactions, cation-π, and other non-covalent interactions. Moreover, GO membranes modified by external pressure and cation also demonstrated further enhanced filtration performance for filtration. This study significantly contributes by uncovering the atomic-scale mechanism responsible for ion sieving in GO membranes. These findings not only enhance the fundamental understanding but also hold substantial potential for the advancement of GO membranes in reverse osmosis (RO) filtration.

8.
Front Pharmacol ; 15: 1378034, 2024.
Article in English | MEDLINE | ID: mdl-38694922

ABSTRACT

Introduction: Streptococcus suis (S. suis) is a zoonotic pathogen threatening public health. Aditoprim (ADP), a novel veterinary medicine, exhibits an antibacterial effect against S. suis. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was used to determine the dosage regimens of ADP against S. suis and withdrawal intervals. Methods: The PBPK model of ADP injection can predict drug concentrations in plasma, liver, kidney, muscle, and fat. A semi-mechanistic pharmacodynamic (PD) model, including susceptible subpopulation and resistant subpopulation, is successfully developed by a nonlinear mixed-effect model to evaluate antibacterial effects. An integrated PBPK/PD model is conducted to predict the time-course of bacterial count change and resistance development under different ADP dosages. Results: ADP injection, administrated at 20 mg/kg with 12 intervals for 3 consecutive days, can exert an excellent antibacterial effect while avoiding resistance emergence. The withdrawal interval at the recommended dosage regimen is determined as 18 days to ensure food safety. Discussion: This study suggests that the PBPK/PD model can be applied as an effective tool for the antibacterial effect and safety evaluation of novel veterinary drugs.

9.
ACS Omega ; 9(19): 21116-21126, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764627

ABSTRACT

Previous studies have revealed that abnormal expressions of membrane transporters were associated with colorectal cancer (CRC). We herein performed a comprehensive bioinformatics analysis to identify the key transporter protein-related genes involved in CRC and potential mechanisms. Differentially expressed transporter protein-related genes (DE-TPRGs) were identified from CRC and normal samples using The Cancer Genome Atlas database. SLC38A3 expression was validated by immunohistochemistry and RT-qPCR, and the potential mechanism was explored. A total of 63 DE-TPRGs (29 up-regulated and 34 down-regulated) were screened. Inside, ABCC2, ABCG2, SLC4A4, SLC9A3, SLC15A1, and SLC38A3 were identified as hub genes. SLC38A3 is indeed upregulated in colorectal cancer patients. Furthermore, we found that knockdown of SLC38A3 inhibited the proliferation and migration of HCT116 cells, and Hsp70 ATPase activator could rescue it. Overall, SLC38A3 is a novel potential biomarker involved in CRC progression and promotes the proliferation and migration of tumor cells by positively regulating the function of Hsp70.

10.
Environ Res ; 252(Pt 3): 119033, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38685300

ABSTRACT

Aerobic composting is a common way for the disposal of feces produced in animal husbandry, and can reduce the release of antibiotic resistance genes (ARGs) from feces into the environment. In this study, we collected samples from two distinct treatments of swine manure compost with and without ceftiofur (CEF), and identified the ARGs, mobile genetic elements (MGEs), and bacterial community by metagenomic sequencing. The impacts of CEF on the bacterial community composition and fate of ARGs and MGEs were investigated. With increasing composting temperature and pH, the concentration of CEF in the manure decreased rapidly, with a degradation half-life of 1.12 d and a 100% removal rate after 10 d of aerobic composting. Metagenomics demonstrated that CEF in the manure might inhibit the growth of Firmicutes and Proteobacteria, thereby reducing some ARGs and MGEs hosted by these two bacteria, which was further confirmed by the variations of ARGs and MGEs. A further redundancy analysis suggested that pH and temperature are key environmental factors affecting ARG removal during composting, and intI1 and bacterial communities also have significant influence on ARG abundance. These results are of great significance for promoting the removal of some ARGs from animal manure by controlling some key environmental factors and the type of antibiotics used in animals.


Subject(s)
Anti-Bacterial Agents , Cephalosporins , Composting , Manure , Animals , Manure/microbiology , Manure/analysis , Swine , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Bacteria/genetics , Bacteria/drug effects
11.
Front Immunol ; 15: 1304888, 2024.
Article in English | MEDLINE | ID: mdl-38605947

ABSTRACT

Background: Prior research has indicated a link between psoriasis and the susceptibility to breast cancer (BC); however, a definitive causal relationship remains elusive. This study sought to elucidate the causal connection and shared underlying mechanisms between psoriasis and BC through bidirectional Mendelian randomization (MR) and bioinformatic approaches. Methods: We employed a bidirectional MR approach to examine the potential causal connection between psoriasis and BC. Genetic data pertaining to psoriasis and BC were sourced from extensive published genome-wide association studies. The inverse -variance weighted or wald ratio served as the primary method for estimating causal effects. Sensitivity analysis of the MR results was applied with multiple methods. Leveraged datasets from the Gene Expression Omnibus and the Cancer Genome Atlas repositories to identify common differentially expressed genes, shedding light on the shared mechanisms underlying these two conditions. Results: The MR analysis revealed that when considering psoriasis as an exposure factor, the incidences of BC (OR=1.027) and estrogen receptor negative (ER-) BC (OR=1.054) were higher than in the general population. When using Her2+ BC as an exposure factor, the risk of psoriasis was 0.822 times higher (OR=0.822) than in the general population. Sensitivity analysis indicated that the results were robust. Transcriptome analysis showed that CXCL13 and CCL20 were activated in both BC and psoriasis. Both diseases were also linked to neutrophil chemotaxis, the IL-17 pathway, and the chemokine pathway. Conclusion: The results suggest that psoriasis may increase the risk of BC, especially ER- BC, while reverse MR suggests a decreased risk of psoriasis in Her2+ BC. Transcriptome analysis revealed a shared mechanism between psoriasis and BC.


Subject(s)
Breast Neoplasms , Psoriasis , Humans , Female , Breast Neoplasms/genetics , Genome-Wide Association Study , Causality , Computational Biology , Mendelian Randomization Analysis , Psoriasis/genetics
14.
J Vet Sci ; 25(1): e18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38311330

ABSTRACT

Mastitis is one of the most widespread infectious diseases that adversely affects the profitability of the dairy industry worldwide. Accurate diagnosis and identification of pathogens early to cull infected animals and minimize the spread of infection in herds is critical for improving treatment effects and dairy farm welfare. The major pathogens causing mastitis and pathogenesis are assessed first. The most recent and advanced strategies for detecting mastitis, including genomics and proteomics approaches, are then evaluated . Finally, the advantages and disadvantages of each technique, potential research directions, and future perspectives are reported. This review provides a theoretical basis to help veterinarians select the most sensitive, specific, and cost-effective approach for detecting bovine mastitis early.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Cattle , Female , Animals , Mastitis, Bovine/diagnosis , Dairying , Farms , Milk
15.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354227

ABSTRACT

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Signal Transduction/physiology , Hepatocytes/metabolism , Gene Expression Profiling , Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
16.
Microbiol Spectr ; 12(4): e0300023, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38411972

ABSTRACT

The prevalence and dissemination of the plasmid-mediated fluoroquinolone (FQ) resistance gene qnr in Salmonella are considered serious public health concerns worldwide. So far, no comprehensive large-scale studies have focused on the prevalence and genetic characteristics of the qnr gene in Salmonella isolated from chickens. Herein, this study aimed to investigate the prevalence, antimicrobial resistance (AMR) patterns, and molecular characteristics of chicken-originated qnr-positive Salmonella strains from chicken farms, slaughterhouses, and markets in 12 provinces of China in 2020-2021. The overall prevalence of the qnr gene was 21.13% (56/265), with the highest prevalence in markets (36.11%, 26/72), followed in farms (17.95%, 21/117), and slaughterhouses (10.53%, 9/76). Only the qnrS and qnrB genes were detected, and the prevalence rate of the qnrS gene (19.25%, 51/265) was higher than that of the qnrB gene (1.89%, 5/265). Whole genome sequencing identified 37 distinct AMR genes and 15 plasmid replicons, and the most frequent mutation in quinolone resistance determining regions was parC (T57S; 91.49%, 43/47). Meanwhile, four different qnrS and two qnrB genetic environments were discovered among 47 qnr-positive Salmonella strains. In total, 21.28% (10/47) of the strains were capable of conjugative transfer, and all were qnrS1-positive strains, with the majority of transferable plasmids being IncHI2 types (n = 4). Overall, the prevalence of qnr-positive Salmonella strains from chickens in China and their carriage of multiple resistance and virulence genes and transferable plasmids is a major concern, which calls for continuous surveillance of qnr-positive Salmonella and the development of measures to control its prevalence and transmission.IMPORTANCESalmonella is a common foodborne pathogen responsible for 155,000 deaths annually worldwide. Fluoroquinolones (FQs) are used as first-line drugs for the treatment of Salmonella infections in several countries and regions. However, the emergence and increasing prevalence of the FQ-resistant gene qnr in Salmonella isolated from chickens have been widely reported. Gaining insight into the genetic mechanisms of AMR genes in chicken could lead to the development of preventive measures to control and reduce the risk of drug resistance. In this study, we identified qnr-positive Salmonellae isolated from chickens in different regions of China and their AMR patterns and genome-wide characteristics, providing a theoretical basis for further control of their prevalence and transmission.


Subject(s)
Chickens , Fluoroquinolones , Animals , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Salmonella/genetics , Plasmids/genetics , Microbial Sensitivity Tests
17.
Pharmaceutics ; 16(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38399231

ABSTRACT

Bacterial resistance is a growing problem worldwide, and the number of deaths due to drug resistance is increasing every year. We must pay great attention to bacterial resistance. Otherwise, we may go back to the pre-antibiotic era and have no drugs on which to rely. Bacterial resistance is the result of several causes, with efflux mechanisms widely recognised as a significant factor in the development of resistance to a variety of chemotherapeutic and antimicrobial medications. Efflux pump inhibitors, small molecules capable of restoring the effectiveness of existing antibiotics, are considered potential solutions to antibiotic resistance and have been an active area of research in recent years. This article provides a review of the efflux mechanisms of common clinical pathogenic bacteria and their efflux pump inhibitors and describes the effects of efflux pump inhibitors on biofilm formation, bacterial virulence, the formation of bacterial persister cells, the transfer of drug resistance among bacteria, and mismatch repair. Numerous efforts have been made in the past 20 years to find novel efflux pump inhibitors which are known to increase the effectiveness of medicines against multidrug-resistant strains. Therefore, the application of efflux pump inhibitors has excellent potential to address and reduce bacterial resistance.

19.
Microb Pathog ; 188: 106536, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199446

ABSTRACT

The uterine endometrial surface of bovines is in constant exposureconstantly exposed with to a multitude ofmany microbial populations that changes throughout the post-partum phase in terms of complexity and dynamics. These microbes contribute to the host pathology, leading to severe economic losses along withnd reproductive capabilities. The basic primary interface that occurs between the internal tissues of the body of the hostbetween the host body's internal tissues and the microbes is the endometrial surface of the uterus. As a result of the infinite pathogenic population, there is always a danger for the opportunistic organisms to attack. Therefore, it is paramount that any interactions, especially microbial microbes with the endometrial surface, are regulated by the host cells. However, the inflammatory response as the defense mechanism contributes a pivotal roleis pivotal in host immunity and pathology. The inflammatory cascade and pathways are important essential to eliminate this clinical problem. In this review, we will discuss and explain how the inflammation and the various components of the immune system play their role in host pathology and therapeutic strategies, taking into account the interface between the host and the microbes on the surface of the endometrium. This review is also instrumental in further explanation of inflammatory uterine disease by discussing the response of inflammation to external insult.


Subject(s)
Endometritis , Female , Animals , Cattle , Humans , Endometritis/drug therapy , Endometritis/veterinary , Inflammation/pathology , Uterus/pathology , Endometrium , Reproduction
20.
Bioresour Technol ; 395: 130318, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219924

ABSTRACT

Quorum sensing potentially helps microorganisms adapt to antibiotic stress encountered in the environment. This experiment investigated the effect of acyl homoserine endolipid-like signaling molecules on microbial antibiotic resistance gene structures in aqueous sediments under florfenicol stress. Additional acyl homoserine endolipid-like signaling molecules (AHLs) alter the structure of multidrug resistance genes in florfenicol-stressed sediments, particularly the multidrug resistance efflux pump gene family. Prophages and integrative and conjugative elements (ICEs) determined the resistance genes structure, and pathways related to mobile genetic elements (MGEs) transfer may play an essential role in this process. The practical application of AHLs to regulate quorum sensing systems may alter bacterial stress responses to environmental florfenicol residues, thereby reducing the development of antibiotic resistance in the environment.


Subject(s)
Homoserine , Thiamphenicol , Thiamphenicol/analogs & derivatives , Homoserine/metabolism , Thiamphenicol/pharmacology , Quorum Sensing/genetics , Anti-Bacterial Agents/pharmacology , Acyl-Butyrolactones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL