Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 489, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734706

ABSTRACT

With the continuous increase in carbon dioxide emissions due to human activities and the resulting severe climate issues, there is global concern about energy conservation and emission reduction. However, detailed data on energy consumption and emissions at a fine-grained scale, particularly regarding spatial dimensions and sector-specific emissions, remains insufficient and in need of refinement and timely updates. In Japan, following the Fukushima nuclear disaster, there has been a significant shift from nuclear power generation to reliance on fossil fuels across various sectors, highlighting disparities in emissions data across different regions and industries. Our work extends the emissions time series for Japan's 47 prefectures, incorporating their socioeconomic characteristics over a broader time frame and with a more detailed sectoral classification. The emissions inventory, covering the period from 1990 to 2020, is based on the consumption of the three main fossil fuels across 32 sectors, with emissions carefully allocated for regional power generation. This dataset, presented in a unified format, is expanded to include longer time scales and more detailed socioeconomic data. It is anticipated to offer crucial insights for establishing regional emission reduction targets and identifying sectoral priorities for decarbonization.

2.
Sci Adv ; 10(15): eadh1077, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38598638

ABSTRACT

Achieving sustainable dietary change is essential for safeguarding human and environmental health. However, dietary recommendations based on broad food groups may not accurately reflect real-world realities because individuals select and consume dishes with multiple food items influenced by diverse context-specific factors. Therefore, here we explored the sustainability trade-offs of dietary choices at the dish level through an optimization modeling approach tested in Japan. We estimated the nutritional quality, price, and carbon footprint of major Japanese dishes and examined 16 dietary scenarios to identify options that meet the nutritional requirements and minimize carbon footprint. Overall, mixed diets contain more combinations of dishes that meet nutritional requirements with lower carbon footprints compared to more restrictive dietary scenarios. We argue that the approach developed here enables a better understanding of dietary trade-offs, complements existing methods, and helps identify sustainable diets by offering nuanced information at the national and sub-national levels.


Subject(s)
Carbon Footprint , Diet , Humans , Food , Nutritional Requirements , Nutrients
3.
Sci Data ; 10(1): 794, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949916

ABSTRACT

Food consumption, which delivers fundamental energy and essential nutrients to human beings, is crucial for achieving a series of sustainable goals. Alongside rising population growth and living standards, there has been a significant increase in food cultivation demands, supply chain complexities, and waste management. Therefore, to protect human health and the environment, promoting sustainable food systems and the uptake of sustainable dietary habits are vital. Yet, information on the environmental and health impact of dietary choices remains inconsistent across multiple evaluation methods, which fail to deliver essential ideas to consumers. In this study, we formulate an integrated approach using Environmentally Extended Input-Output analysis, covering the food supply chain from production to the distribution phase, complemented with a hybrid Life Cycle Assessment for cooking and disposal processes, to quantify the carbon footprint of specific recipes. Our dataset also includes the distinct nutritional values of each recipe. This dataset not only informs the food industry and recipe platforms, enabling more sustainable choices, but also helps individuals balance nutritional value with environmental impact, leading to more informed and sustainable dietary decisions.


Subject(s)
Carbon Footprint , Diet , Humans , Cooking , Feeding Behavior , Nutritive Value
4.
Sci Data ; 10(1): 439, 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37422522

ABSTRACT

Household consumption significantly contributes to greenhouse gas emissions as it is the largest component of final demand in the national accounting system. Nevertheless, there is an apparent lack of comprehensive and consistent datasets detailing emissions from household consumption. Here, we expand and update Japan's multiscale monthly household carbon footprint from January 2011 to September 2022, combining data from government statistics and surveys. We constructed a dataset comprising 37,692 direct and 4,852,845 indirect emission records, covering households at the national, regional, and prefectural city levels. The dataset provides critical spatiotemporal information that allows for revealing carbon emission patterns, pinpointing primary sources of emissions, and discerning regional variances. Moreover, the inclusion of micro-scale carbon footprint data enables the identification of specific consumption habits, thereby regulating individual consumption behavior to achieve a low-carbon society.

6.
NPJ Urban Sustain ; 3(1): 19, 2023.
Article in English | MEDLINE | ID: mdl-37009569

ABSTRACT

As urbanization accelerates worldwide, substantial energy and services are required to meet the demand from cities, making cities major contributors to adverse environmental consequences. To bridge the knowledge gap in the absence of fine-grained city-level climate protection measures due to data availability and accuracy, this study provides a detailed carbon emission inventory for analyzing the monthly fluctuations based on citizens' daily consumption behaviors. Here, carbon emissions embodied in approximately 500 household consumption items were calculated in 47 prefectural-level cities in Japan from 2011 to June 2021. We analyzed the results considering the regional, seasonal, demand, and emission way-specific aspects, and compared the emission before and during the COVID-19 pandemic. Notably, the carbon footprints during the pandemic were consistent with the previous level despite downtrends in specific categories. This study provides an example of utilizing city-level emission data to improve household green consumption behavior as references for enriching city-level decarbonization paths.

7.
BMC Med Genomics ; 16(1): 52, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906552

ABSTRACT

BACKGROUND: Ferroptosis plays an important role in the development of acute-on-chronic liver failure (ACLF). The present project aimed to identify and validate the potential ferroptosis-related genes in ACLF by bioinformatics analysis and experimental verification. MATERIALS AND METHODS: The GSE139602 dataset was obtained from the Gene Expression Omnibus database and intersected with ferroptosis genes. Ferroptosis-related differentially expressed genes (DEGs) between the ACLF tissue and healthy group were analyzed using bioinformatics methods. Analysis of enrichment, protein‒protein interactions, and hub genes was conducted. Potential drugs targeting these hub genes were retrieved from the DrugBank database. Finally, we performed real-time quantitative PCR (RT-qPCR) to validate the expression of the hub genes. RESULTS: A total of 35 ferroptosis-related DEGs were screened, which were enriched in the biosynthesis of amino acids, peroxisomes, fluid shear stress and atherosclerosis. PPI network analysis indicated five ferroptosis-related hub genes, namely, HRAS, TXNRD1, NQO1, PSAT1, and SQSTM1. The experimental validation indicated that the expression levels of HRAS, TXNRD1, NQO1, and SQSTM1 were lower, while the expression level of PSAT1 was higher in ACLF model rats than in healthy rats. CONCLUSIONS: Our findings reveal that PSAT1, TXNRD1, HRAS, SQSTM1 and NQO1 may affect the development of ACLF by regulating ferroptotic events. These results provide a valid reference for potential mechanisms and identification in ACLF.


Subject(s)
Acute-On-Chronic Liver Failure , Ferroptosis , Animals , Rats , Sequestosome-1 Protein , Amino Acids , Computational Biology
8.
Clin Res Hepatol Gastroenterol ; 46(2): 101783, 2022 02.
Article in English | MEDLINE | ID: mdl-34339873

ABSTRACT

Acute-on-chronic liver failure (ACLF) has been a hot spot in the field of liver disease research in recent years, with high morbidity, rapid course change and high mortality. Currently, there is the absence of specific treatment in clinical practice. Liver transplantation has the best therapeutic effect, but it is prone to have internal environment disorder and liver cell death after transplantation, which leads to the failure of transplantation.In recent years, with the development of molecular biology, scholars have explored the treatment of ACLF at the molecular level, and more and more molecular signaling pathways related to the treatment of ACLF have been discovered. Modulating the relevant signaling pathways to reduce the mortality of liver cells after transplantation may effectively improve the success rate of transplantation. In this review, we introduce some signaling pathways related to cell death and their research progress in acute-on-chronic liver failure.


Subject(s)
Acute-On-Chronic Liver Failure , Liver Transplantation , Cell Death , Hepatocytes , Humans , Liver Cirrhosis , Prognosis , Signal Transduction
9.
J Ethnopharmacol ; 279: 114305, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34129898

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Niujiaodihuang Detoxify Decoction (NDD) is an integrated traditional Chinese medicine prescription that has been used as a therapeutic agent for the treatment of acute liver failure (ALF). However, the mechanisms underlying its action remain unclear. AIM OF THE STUDY: To determine the protective effect of NDD on D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced ALF and explore the underlying mechanisms. MATERIALS AND METHODS: We characterized the NDD fingerprint by HPLC and established D-GalN/LPS-induced ALF models in Sprague-Dawley rats and LO2 cells. Next, we measured the protective and antiferroptotic effects of NDD in vivo and in vitro. To further investigate the molecular mechanisms underlying the effects of NDD, we performed metabolomic analysis of the liver tissue using LC-MS/MS. RESULTS: Results of serum biochemical analysis, liver histopathology, and cell viability showed that NDD effectively relieved the liver injury. It reduced the accumulation of labile iron and alleviated lipid peroxidation by enhancing GPX4 activity. The mitochondrial morphology indicated that NDD exerted its hepatoprotective effect through an antiferroptotic activity. Metabolomic analysis showed that NDD treatment increased the levels of cysteine, decreased those of glutamate, and ameliorated the D-GalN/LPS-induced reduction in the levels of glutathione (GSH). The results for intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were consistent with those of metabolomic analysis. CONCLUSION: Our findings indicate that NDD exerts hepatoprotective activity by evoking the reprogramming of GSH metabolism, and thereby, inhibiting ferroptosis.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Ferroptosis/drug effects , Glutathione/metabolism , Liver Failure, Acute/prevention & control , Animals , Cell Line , Chromatography, Liquid , Disease Models, Animal , Humans , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Metabolomics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
10.
Sci Total Environ ; 783: 146906, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-33866177

ABSTRACT

As climate issues gradually attract public attention worldwide, the operation and construction of oil product pipelines have been attached with new energy-saving and emission-reduction targets. Though previous studies concerning Life Cycle Assessment of oil and gas pipelines have estimated the carbon footprint to some extent, there is a lack of researches that take the characteristics of oil products pipelines into consideration. Oil products pipelines undertake the task of delivering various products to downstream demand locations, which differs greatly from other pipeline transportation systems as back-to-back sequential delivery is adopted. In this paper, a detailed Life Cycle Assessment model is established to analyze carbon emissions of oil products pipeline system from construction to disposal as well as its impact on soil environment. Data from practical pipes is adopted as the case study to reflect emissions produced in different stages, and the amount of total and unified emissions of different pipes provided through the proposed model is within the range of 2.78 to 4.70 tCO2e/t·km. Then, sensitivity analysis is carried out to identify the driving factors of emissions. According to the calculation results, pipe length, diameter and throughput turn out to be the dominating factors, and an empirical formula is derived for future planned pipes. Relevant recommendations are put forward based on the results to help reduce emissions from oil product pipe transportation.

11.
Appl Energy ; 283: 116339, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33753961

ABSTRACT

With the coronavirus pandemic wreathing havoc around the world, power industry has been hit hard due to the proposal of lockdown policies. However, the impact of lockdowns and shutdowns on the power system in different regions as well as periods of the pandemic can hardly be reflected on the foundation of current studies. In this paper, a prediction-based analysis method is developed to point out the electricity consumption gap resulted from the pandemic situation. The core of this method is a novel optimized grey prediction model, namely Rolling IMSGM(1,1) (Rolling Mechanism combined with grey model with initial condition as Maclaurin series), which achieves better prediction results in the face of long-term emergencies. A novel initial condition is adopted to track data with various characteristics in the form of higher-order polynomials, which are then determined by intelligent algorithms to realize accurate fitting. Historical power consumption data in China are utilized to carry out the monthly forecasts during COVID-19. Compared with other competitive models' prediction results, the superiority of IMSGM(1,1) are demonstrated. Through analyzing the gap between predicted consumption values and the actual data, it can be found that the impact of the pandemic on electricity varies in different periods, which is related to its severity and the local lockdown policies. This study helps to understand the impact on power industry in the face of such an emergency intuitively so as to respond to possible future events.

12.
Zhongguo Zhong Yao Za Zhi ; 43(2): 336-344, 2018 Jan.
Article in Chinese | MEDLINE | ID: mdl-29552853

ABSTRACT

The chemical constituents from lipophilic parts of the stems of Celastrus monospermus were studied in this paper. The compounds were separated and purified by repeated column chromatographic methods including silica gel, ODS and Sephadex LH-20, and the structures of compounds were determined by spectral data analyses. Twenty six compounds were obtained and identified as 3-oxofriedelane(1), 3-oxofriedelan-28-al(2), 3,12-dioxofriedelane(3), 3ß-hydroxyolean-12-en(4), 3-oxo-28-hydroxyfriedelane(5), 3-oxo-29-hydroxyfriedelane(6), 3-oxo-11ß-hydroxyfriedel-ane(7), 3-oxo-16α-hydroxyfriedelane(8), 3,12-dioxo-28-hydroxyfriedelane(9), 1,3-dioxo-15α-hydroxyfriedelane(10), 3ß,6α-dihydroxyolean-12-en(11), 3-oxo-7α,26-dihydroxyfriedel-ane(12), oleanolic acid(13), 3,15-dioxofriedelane(14), 3α-friedelinol(15), 3,12-dioxofriedelan-28-al(16), 3-oxo-12α-hydroxyfriedelane(17), 3,15-dioxo-12α-hydroxyfriedelane(18), 3ß,11ß-dihydroxyolean-12-en(19), 1ß,3ß-dihydroxylupan-20(29)-en(20), 3-oxo-12α,28-dihydroxyfriedelane(21), 3ß,23-epoxyfriedelan-28-oic acid(22), salaquinone A(23), 2α,3ß-dihydroxyfriedelan-28-oic acid(24), 23-nor-6-oxodemethylpristimerol(25) and 3-oxo-friedelan-27,28-dioic acid(26). Among them, compounds 8, 10-15, 18-20, 22-26 were obtained from this plant for the first time, and compounds 8, 10, 12, 14-15, 18, 22-24, 26 were separated from the genus Celastrus for the first time.


Subject(s)
Celastrus/chemistry , Phytochemicals/isolation & purification , Plant Stems/chemistry , Triterpenes/isolation & purification
13.
Water Res ; 76: 160-70, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25813490

ABSTRACT

Here we show that concomitant removal of phenol and nitrogen can be accomplished in a single dual-chamber microbial fuel cell (MFC) reactor, in which the two chambers are separated with an anion-exchange membrane. A series of experiments were performed with ammonium (230 NH4(+)-N mg L(-1)) and phenol (with concentrations varying from 0 to 1400 mg L(-1)) fed to the aerobic cathode chamber of the MFC. Experimental results demonstrated that no apparent inhibitory effect of phenol on the nitrifying reaction was noted even at the phenol concentration up to 600 mg L(-1). For all the experiments, simultaneous nitrification and denitrification was achieved in the MFC. In comparison to the traditional aerobic bioreactor (ABR) and the same MFC run under the open-circuit condition, the MFC reactor allowed less inhibition of nitrification to phenol exposure and higher rate of nitrogen removal. The data of bacterial analysis revealed that electrochemically active bacteria and denitrifiers in the anaerobic chamber play a significant role in electricity generation and anaerobic denitrification, respectively, while phenol-degrading bacteria, nitrifiers, and denitrifiers in the aerobic cathode chamber are responsible for phenol oxidation, aerobic nitrification and aerobic denitrification, respectively. These results imply that the MFC holds potential for simultaneous removal of phenolic compounds and nitrogen contained in some particular industrial wastewaters.


Subject(s)
Bioelectric Energy Sources/microbiology , Bioreactors , Nitrogen/chemistry , Phenol/chemistry , Water Purification/methods , Ammonium Compounds/chemistry , Bacteria/metabolism , Denitrification , Nitrification , Waste Disposal, Fluid/methods
14.
Bioresour Technol ; 157: 305-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24584100

ABSTRACT

Anode-biofilm electron transfer behavior was investigated during the advanced wastewater treatment process by three bioelectrochemical systems (BESs): microbial fuel cell (MFC), MFC operated under short circuit condition (MSC), and microbial electrolysis cell (MEC). Under different operational modes, current produced by the anode biofilm varied from 0.92, 4.15 to 8.21mA in the sequence of MFC, MSC and MEC, respectively. The cyclic voltammetry test on the anode biofilm suggested that the current generation was achieved via various bioelectroactive species with formal potentials at -0.473, -0.402 and -0.345V (vs. SCE). Gibbs free energy and charge transfer resistance data demonstrated that different amounts of available bioelectroactive species functioned in different BESs. The comparative investigation among MFC, MSC and MEC suggested that MEC was the only feasible operational mode for advanced wastewater treatment, because of its superior current generation capability.


Subject(s)
Bioelectric Energy Sources , Biofilms , Electrons , Wastewater/microbiology , Water Purification/methods , Electricity , Electrodes , Electrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...