Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 11(1): 61, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296633

ABSTRACT

The goal of spectral imaging is to capture the spectral signature of a target. Traditional scanning method for spectral imaging suffers from large system volume and low image acquisition speed for large scenes. In contrast, computational spectral imaging methods have resorted to computation power for reduced system volume, but still endure long computation time for iterative spectral reconstructions. Recently, deep learning techniques are introduced into computational spectral imaging, witnessing fast reconstruction speed, great reconstruction quality, and the potential to drastically reduce the system volume. In this article, we review state-of-the-art deep-learning-empowered computational spectral imaging methods. They are further divided into amplitude-coded, phase-coded, and wavelength-coded methods, based on different light properties used for encoding. To boost future researches, we've also organized publicly available spectral datasets.

2.
Light Sci Appl ; 10(1): 108, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34035213

ABSTRACT

Many applications requiring both spectral and spatial information at high resolution benefit from spectral imaging. Although different technical methods have been developed and commercially available, computational spectral cameras represent a compact, lightweight, and inexpensive solution. However, the tradeoff between spatial and spectral resolutions, dominated by the limited data volume and environmental noise, limits the potential of these cameras. In this study, we developed a deeply learned broadband encoding stochastic hyperspectral camera. In particular, using advanced artificial intelligence in filter design and spectrum reconstruction, we achieved 7000-11,000 times faster signal processing and ~10 times improvement regarding noise tolerance. These improvements enabled us to precisely and dynamically reconstruct the spectra of the entire field of view, previously unreachable with compact computational spectral cameras.

SELECTION OF CITATIONS
SEARCH DETAIL
...