Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Neuron ; 111(4): 557-570.e7, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36543170

ABSTRACT

How social contact is perceived as rewarding and subsequently modifies interactions is unclear. Dopamine (DA) from the ventral tegmental area (VTA) regulates sociality, but the ongoing, unstructured nature of free behavior makes it difficult to ascertain how. Here, we tracked the emergence of a repetitive stereotyped parental retrieval behavior and conclude that VTA DA neurons incrementally refine it by reinforcement learning (RL). Trial-by-trial performance was correlated with the history of DA neuron activity, but DA signals were inconsistent with VTA directly influencing the current trial. We manipulated the subject's expectation of imminent pup contact and show that DA signals convey reward prediction error, a fundamental component of RL. Finally, closed-loop optogenetic inactivation of DA neurons at the onset of pup contact dramatically slowed emergence of parental care. We conclude that this component of maternal behavior is shaped by an RL mechanism in which social contact itself is the primary reward.


Subject(s)
Dopamine , Reward , Female , Humans , Mice , Animals , Reinforcement, Psychology , Learning/physiology , Dopaminergic Neurons/physiology , Ventral Tegmental Area/physiology , Maternal Behavior
3.
Cell ; 182(1): 177-188.e27, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32619423

ABSTRACT

Comprehensive analysis of neuronal networks requires brain-wide measurement of connectivity, activity, and gene expression. Although high-throughput methods are available for mapping brain-wide activity and transcriptomes, comparable methods for mapping region-to-region connectivity remain slow and expensive because they require averaging across hundreds of brains. Here we describe BRICseq (brain-wide individual animal connectome sequencing), which leverages DNA barcoding and sequencing to map connectivity from single individuals in a few weeks and at low cost. Applying BRICseq to the mouse neocortex, we find that region-to-region connectivity provides a simple bridge relating transcriptome to activity: the spatial expression patterns of a few genes predict region-to-region connectivity, and connectivity predicts activity correlations. We also exploited BRICseq to map the mutant BTBR mouse brain, which lacks a corpus callosum, and recapitulated its known connectopathies. BRICseq allows individual laboratories to compare how age, sex, environment, genetics, and species affect neuronal wiring and to integrate these with functional activity and gene expression.


Subject(s)
Connectome , Gene Expression Regulation , Nerve Net/physiology , Neurons/physiology , Sequence Analysis, DNA , Animals , Brain Mapping , Decision Making , Male , Mice, Inbred C57BL , Mice, Neurologic Mutants , Reproducibility of Results , Task Performance and Analysis
4.
Nat Neurosci ; 20(2): 189-199, 2017 02.
Article in English | MEDLINE | ID: mdl-28024159

ABSTRACT

Sensory maps are created by networks of neuronal responses that vary with their anatomical position, such that representations of the external world are systematically and topographically organized in the brain. Current understanding from studying excitatory maps is that maps are sculpted and refined throughout development and/or through sensory experience. Investigating the mouse olfactory bulb, where ongoing neurogenesis continually supplies new inhibitory granule cells into existing circuitry, we isolated the development of sensory maps formed by inhibitory networks. Using in vivo calcium imaging of odor responses, we compared functional responses of both maturing and established granule cells. We found that, in contrast to the refinement observed for excitatory maps, inhibitory sensory maps became broader with maturation. However, like excitatory maps, inhibitory sensory maps are sensitive to experience. These data describe the development of an inhibitory sensory map as a network, highlighting the differences from previously described excitatory maps.


Subject(s)
Nerve Net/growth & development , Neurogenesis/physiology , Neurons/physiology , Olfactory Bulb/growth & development , Smell/physiology , Animals , Female , Male , Mice, Transgenic , Odorants/analysis
5.
J Neurosci ; 36(34): 8856-71, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27559168

ABSTRACT

UNLABELLED: Elucidating patterns of functional synaptic connectivity and deciphering mechanisms of how plasticity influences such connectivity is essential toward understanding brain function. In the mouse olfactory bulb (OB), principal neurons (mitral/tufted cells) make reciprocal connections with local inhibitory interneurons, including granule cells (GCs) and external plexiform layer (EPL) interneurons. Our current understanding of the functional connectivity between these cell types, as well as their experience-dependent plasticity, remains incomplete. By combining acousto-optic deflector-based scanning microscopy and genetically targeted expression of Channelrhodopsin-2, we mapped connections in a cell-type-specific manner between mitral cells (MCs) and GCs or between MCs and EPL interneurons. We found that EPL interneurons form broad patterns of connectivity with MCs, whereas GCs make more restricted connections with MCs. Using an olfactory associative learning paradigm, we found that these circuits displayed differential features of experience-dependent plasticity. Whereas reciprocal connectivity between MCs and EPL interneurons was nonplastic, the connections between GCs and MCs were dynamic and adaptive. Interestingly, experience-dependent plasticity of GCs occurred only in certain stages of neuronal maturation. We show that different interneuron subtypes form distinct connectivity maps and modes of experience-dependent plasticity in the OB, which may reflect their unique functional roles in information processing. SIGNIFICANCE STATEMENT: Deducing how specific interneuron subtypes contribute to normal circuit function requires understanding the dynamics of their connections. In the olfactory bulb (OB), diverse interneuron subtypes vastly outnumber principal excitatory cells. By combining acousto-optic deflector-based scanning microscopy, electrophysiology, and genetically targeted expression of Channelrhodopsin-2, we mapped the functional connectivity between mitral cells (MCs) and OB interneurons in a cell-type-specific manner. We found that, whereas external plexiform layer (EPL) interneurons show broadly distributed patterns of stable connectivity with MCs, adult-born granule cells show dynamic and plastic patterns of synaptic connectivity with task learning. Together, these findings reveal the diverse roles for interneuons within sensory circuits toward information learning and processing.


Subject(s)
Association Learning/physiology , Brain Mapping , Interneurons/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Olfactory Bulb/cytology , Analysis of Variance , Animals , Channelrhodopsins , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , In Vitro Techniques , Inhibitory Postsynaptic Potentials/genetics , Inhibitory Postsynaptic Potentials/physiology , Interneurons/classification , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Light , Mice , Mice, Transgenic , Microscopy, Confocal , Neural Inhibition/genetics , Neural Inhibition/physiology , Neuronal Plasticity/genetics , Odorants , Optogenetics , Patch-Clamp Techniques , Thy-1 Antigens/genetics , Thy-1 Antigens/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Brain Struct Funct ; 221(1): 1-20, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25224546

ABSTRACT

Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related behaviors. Further, we provide electrophysiological evidence that CRHR1-expressing granule cells functionally respond to CRH ligand, and that the physiological circuitry of CRHR1 knockout mice is abnormal, leading to impaired olfactory behaviors. Together, these data suggest a physiologically relevant role for local CRH signaling towards shaping the neuronal circuitry within the mouse OB.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Interneurons/physiology , Olfactory Bulb/physiology , Olfactory Perception/physiology , Receptors, Corticotropin-Releasing Hormone/metabolism , Animals , Discrimination, Psychological/physiology , Excitatory Postsynaptic Potentials , Female , Interneurons/metabolism , Memory, Short-Term/physiology , Mice , Mice, Knockout , Odorants , Olfactory Bulb/growth & development , Olfactory Bulb/metabolism , Receptors, Corticotropin-Releasing Hormone/genetics
7.
J Neurosci ; 35(6): 2612-23, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25673853

ABSTRACT

Recent studies have found that those who suffer from posttraumatic stress disorder (PTSD) are more likely to experience dementia as they age, most often Alzheimer's disease (AD). These findings suggest that the symptoms of PTSD might have an exacerbating effect on AD progression. AD and PTSD might also share common susceptibility factors such that those who experience trauma-induced disease were already more likely to succumb to dementia with age. Here, we explored these two hypotheses using a mouse model of PTSD in wild-type and AD model animals. We found that expression of human familial AD mutations in amyloid precursor protein and presenilin 1 leads to sensitivity to trauma-induced PTSD-like changes in behavioral and endocrine stress responses. PTSD-like induction, in turn, chronically elevates levels of CSF ß-amyloid (Aß), exacerbating ongoing AD pathogenesis. We show that PTSD-like induction and Aß elevation are dependent on corticotropin-releasing factor (CRF) receptor 1 signaling and an intact hypothalamic-pituitary-adrenal axis. Furthermore, we show that Aß species can hyperexcite CRF neurons, providing a mechanism by which Aß influences stress-related symptoms and PTSD-like phenotypes. Consistent with Aß causing excitability of the stress circuitry, we attenuate PTSD-like phenotypes in vivo by lowering Aß levels during PTSD-like trauma exposure. Together, these data demonstrate that exposure to PTSD-like trauma can drive AD pathogenesis, which directly perturbs CRF signaling, thereby enhancing chronic PTSD symptoms while increasing risk for AD-related dementia.


Subject(s)
Amyloid beta-Peptides/metabolism , Corticotropin-Releasing Hormone/metabolism , Neurons/metabolism , Stress Disorders, Post-Traumatic/metabolism , Stress, Psychological/metabolism , Adrenal Cortex Hormones/cerebrospinal fluid , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Animals , Behavior, Animal , CHO Cells , Cricetulus , Gene Knock-In Techniques , Mice , Primary Cell Culture , Stress Disorders, Post-Traumatic/psychology , Stress, Psychological/psychology
8.
Dev Cell ; 30(6): 645-59, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25199688

ABSTRACT

Neural activity either enhances or impairs de novo synaptogenesis and circuit integration of neurons, but how this activity is mechanistically relayed in the adult brain is largely unknown. Neuropeptide-expressing interneurons are widespread throughout the brain and are key candidates for conveying neural activity downstream via neuromodulatory pathways that are distinct from classical neurotransmission. With the goal of identifying signaling mechanisms that underlie neuronal circuit integration in the adult brain, we have virally traced local corticotropin-releasing hormone (CRH)-expressing inhibitory interneurons with extensive presynaptic inputs onto new neurons that are continuously integrated into the adult rodent olfactory bulb. Local CRH signaling onto adult-born neurons promotes and/or stabilizes chemical synapses in the olfactory bulb, revealing a neuromodulatory mechanism for continued circuit plasticity, synapse formation, and integration of new neurons in the adult brain.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Interneurons/physiology , Neurogenesis , Synapses/physiology , Animals , Corticotropin-Releasing Hormone/genetics , Interneurons/cytology , Interneurons/metabolism , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Olfactory Bulb/cytology , Olfactory Bulb/growth & development , Olfactory Bulb/metabolism , Synapses/metabolism
9.
Nat Commun ; 5: 3177, 2014.
Article in English | MEDLINE | ID: mdl-24495972

ABSTRACT

Aggressive behaviour is widespread throughout the animal kingdom. However, its mechanisms are poorly understood, and the degree of molecular conservation between distantly related species is unknown. Here we show that knockdown of tailless (tll) increases aggression in Drosophila, similar to the effect of its mouse orthologue Nr2e1. Tll localizes to the adult pars intercerebralis (PI), which shows similarity to the mammalian hypothalamus. Knockdown of tll in the PI is sufficient to increase aggression and is rescued by co-expressing human NR2E1. Knockdown of Atrophin, a Tll co-repressor, also increases aggression, and both proteins physically interact in the PI. tll knockdown-induced aggression is fully suppressed by blocking neuropeptide processing or release from the PI. In addition, genetically activating PI neurons increases aggression, mimicking the aggression-inducing effect of hypothalamic stimulation. Together, our results suggest that a transcriptional control module regulates neuropeptide signalling from the neurosecretory cells of the brain to control aggressive behaviour.


Subject(s)
Aggression , Drosophila Proteins/physiology , Neuropeptides/metabolism , Pituitary Gland, Intermediate/physiology , Repressor Proteins/physiology , Signal Transduction , Transcription Factors/physiology , Animals , Drosophila , Drosophila Proteins/genetics , Gene Knockdown Techniques , Male , Pituitary Gland, Intermediate/metabolism , Repressor Proteins/genetics
10.
Elife ; 3: e01481, 2014.
Article in English | MEDLINE | ID: mdl-24473077

ABSTRACT

Channelrhodopsin-2 (ChR2) has quickly gained popularity as a powerful tool for eliciting genetically targeted neuronal activation. However, little has been reported on the response kinetics of optogenetic stimulation across different neuronal subtypes. With excess stimulation, neurons can be driven into depolarization block, a state where they cease to fire action potentials. Herein, we demonstrate that light-induced depolarization block in neurons expressing ChR2 poses experimental challenges for stable activation of specific cell types and may confound interpretation of experiments when 'activated' neurons are in fact being functionally silenced. We show both ex vivo and in vivo that certain neuronal subtypes targeted for ChR2 expression become increasingly susceptible to depolarization block as the duration of light pulses are increased. We find that interneuron populations have a greater susceptibility to this effect than principal excitatory neurons, which are more resistant to light-induced depolarization block. Our results highlight the need to empirically determine the photo-response properties of targeted neurons when using ChR2, particularly in studies designed to elicit complex circuit responses in vivo where neuronal activity will not be recorded simultaneous to light stimulation. DOI: http://dx.doi.org/10.7554/eLife.01481.001.


Subject(s)
Brain/radiation effects , Interneurons/radiation effects , Light , Neural Inhibition/radiation effects , Action Potentials/radiation effects , Animals , Brain/cytology , Brain/metabolism , Channelrhodopsins , In Vitro Techniques , Interneurons/metabolism , Kinetics , Mice, Transgenic , Optogenetics , Photic Stimulation
11.
Nat Commun ; 5: 3102, 2014.
Article in English | MEDLINE | ID: mdl-24434523

ABSTRACT

Synthetic genetic circuits are programmed in living cells to perform predetermined cellular functions. However, designing higher-order genetic circuits for sophisticated cellular activities remains a substantial challenge. Here we program a genetic circuit that executes Pavlovian-like conditioning, an archetypical sequential-logic function, in Escherichia coli. The circuit design is first specified by the subfunctions that are necessary for the single simultaneous conditioning, and is further genetically implemented using four function modules. During this process, quantitative analysis is applied to the optimization of the modules and fine-tuning of the interconnections. Analogous to classical Pavlovian conditioning, the resultant circuit enables the cells to respond to a certain stimulus only after a conditioning process. We show that, although the conditioning is digital in single cells, a dynamically progressive conditioning process emerges at the population level. This circuit, together with its rational design strategy, is a key step towards the implementation of more sophisticated cellular computing.


Subject(s)
Escherichia coli/genetics , Escherichia coli/physiology , Gene Regulatory Networks , Flow Cytometry , Microscopy, Fluorescence
12.
Article in English | MEDLINE | ID: mdl-23459611

ABSTRACT

Proper brain function relies on exquisite balance between excitation and inhibition, where inhibitory circuits play fundamental roles toward sculpting principle neuron output and information processing. In prominent models of olfactory bulb circuitry, inhibition of mitral cells by local interneurons sharpens odor tuning and provides contrast enhancement. Mitral cell inhibition occurs at both mitral cell apical dendrites and deep-layer dendrodendritic synapses between granule cells, the most abundant population of inhibitory interneurons in the olfactory bulb. However, it remains unclear whether other local interneurons make inhibitory connections onto mitral cells. Here, we report a novel circuitry with strong and reciprocal connectivity between a subpopulation of previously uncharacterized Corticotropin-Releasing Hormone (CRH)-expressing interneurons located in the external plexiform layer (EPL), and mitral cells. Using cell type-specific genetic manipulations, imaging, optogenetic stimulation, and electrophysiological recordings, we reveal that CRH-expressing EPL interneurons strongly inhibit mitral cell firing, and that they are reciprocally excited by fast glutamatergic mitral cell input. These findings functionally identify a novel subpopulation of olfactory bulb interneurons that show reciprocal connectivity with mitral cells, uncovering a previously unknown, and potentially critical player in olfactory bulb circuitry that may influence lateral interactions and/or facilitate odor processing.


Subject(s)
Interneurons/physiology , Nerve Net/physiology , Odorants , Olfactory Bulb/physiology , Olfactory Pathways/physiology , Photic Stimulation/methods , Animals , Female , Gene Knock-In Techniques , Male , Mice , Mice, Transgenic , Nerve Net/cytology , Neural Inhibition/physiology , Olfactory Bulb/cytology , Olfactory Pathways/cytology
13.
Stem Cells ; 30(10): 2140-51, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22996827

ABSTRACT

Transsynaptic circuit tracing using genetically modified rabies virus (RV) is an emerging technology for identifying synaptic connections between neurons. Complementing this methodology, it is now possible to assay the basic molecular and cellular properties of neuronal lineages derived from embryonic stem cells (ESCs) in vitro, and these properties are under intense investigation toward devising cell replacement therapies. Here, we report the generation of a novel mouse ESC (mESC) line that harbors the genetic elements to allow RV-mediated transsynaptic circuit tracing in ESC-derived neurons and their synaptic networks. To facilitate transsynaptic tracing, we have engineered a new reporter allele by introducing cDNA encoding tdTomato, the Rabies-G glycoprotein, and the avian TVA receptor into the ROSA26 locus by gene targeting. We demonstrate high-efficiency differentiation of these novel mESCs into functional neurons, show their capacity to synaptically connect with primary neuronal cultures as evidenced by immunohistochemistry and electrophysiological recordings, and show their ability to act as source cells for presynaptic tracing of neuronal networks in vitro and in vivo. Together, our data highlight the potential for using genetically engineered stem cells to investigate fundamental mechanisms of synapse and circuit formation with unambiguous identification of presynaptic inputs onto neuronal populations of interest.


Subject(s)
Embryonic Stem Cells/metabolism , Neurons/metabolism , Proteins/metabolism , Synapses/physiology , Alleles , Animals , Antigens, Viral/genetics , Antigens, Viral/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Biomarkers/metabolism , Birds , Cell Differentiation , Cell Engineering , Cell Line , Embryo, Mammalian , Embryonic Stem Cells/cytology , Founder Effect , Glycoproteins/genetics , Glycoproteins/metabolism , Mice , Nerve Net , Neurons/cytology , Primary Cell Culture , Proteins/genetics , RNA, Untranslated , Rabies virus/genetics , Receptors, Virus/genetics , Receptors, Virus/metabolism , Synapses/ultrastructure , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
14.
Neural Netw ; 24(10): 1110-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21724371

ABSTRACT

Understanding why neural systems can process information extremely fast is a fundamental question in theoretical neuroscience. The present study investigates the effect of noise on accelerating neural computation. To evaluate the speed of network response, we consider a computational task in which the network tracks time-varying stimuli. Two noise structures are compared, namely, the stimulus-dependent and stimulus-independent noises. Based on a simple linear integrate-and-fire model, we theoretically analyze the network dynamics, and find that the stimulus-dependent noise, whose variance is proportional to the mean of external inputs, has better effect on speeding up network computation. This is due to two good properties in the transient network dynamics: (1) the instant firing rate of the network is proportional to the mean of external inputs, and (2) the stationary state of the network is robust to stimulus changes. We investigate two network models with varying recurrent interactions, and find that recurrent interactions tend to slow down the tracking speed of the network. When the biologically plausible Hodgkin-Huxley model is considered, we also observe that the stimulus-dependent noise accelerates neural computation, although the improvement is smaller than that in the case of linear integrate-and-fire model.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/physiology , Nerve Net/physiology , Neural Networks, Computer , Neurons/physiology , Reaction Time/physiology , Animals , Artifacts , Humans , Linear Models , Membrane Potentials/physiology , Models, Neurological , Synaptic Transmission/physiology
15.
Mol Syst Biol ; 6: 350, 2010.
Article in English | MEDLINE | ID: mdl-20212522

ABSTRACT

Design and synthesis of basic functional circuits are the fundamental tasks of synthetic biologists. Before it is possible to engineer higher-order genetic networks that can perform complex functions, a toolkit of basic devices must be developed. Among those devices, sequential logic circuits are expected to be the foundation of the genetic information-processing systems. In this study, we report the design and construction of a genetic sequential logic circuit in Escherichia coli. It can generate different outputs in response to the same input signal on the basis of its internal state, and 'memorize' the output. The circuit is composed of two parts: (1) a bistable switch memory module and (2) a double-repressed promoter NOR gate module. The two modules were individually rationally designed, and they were coupled together by fine-tuning the interconnecting parts through directed evolution. After fine-tuning, the circuit could be repeatedly, alternatively triggered by the same input signal; it functions as a push-on push-off switch.


Subject(s)
Gene Regulatory Networks , Models, Genetic , Binding Sites , Computer Simulation , Escherichia coli/genetics , Escherichia coli/radiation effects , Mutation/genetics , Ribosomes/metabolism , Signal Transduction/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...