Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4019, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740756

ABSTRACT

Most reported thermal emitters to date employing photonic nanostructures to achieve narrow bandwidth feature the rainbow effect due to the steep dispersion of the involved high-Q resonances. In this work, we propose to realize thermal emissions with high temporal coherence but free from rainbow effect, by harnessing a novel flat band design within a large range of wavevectors. This feature is achieved by introducing geometric perturbations into a square lattice of high-index disks to double the period along one direction. As a result of the first Brillouin zone halving, the guided modes will be folded to the Γ point and interact with originally existing guided-mode resonances to form a flat band of dispersion with overall high Q. Despite the use of evaporated amorphous materials, we experimentally demonstrate a thermal emission with the linewidth of 23 nm at 5.144 µm within a wide range of output angles (from -17.5° to 17.5°).

2.
Nat Commun ; 15(1): 4362, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778029

ABSTRACT

Light-induced spin currents with the faster response is essential for the more efficient information transmission and processing. Herein, we systematically explore the effect of light illumination energy and direction on the light-induced spin currents in the W/Y3Fe5O12 heterojunction. Light-induced spin currents can be clearly categorized into two types. One is excited by the low light intensity, which mainly involves the photo-generated spin current from spin photovoltaic effect. The other is caused by the high light intensity, which is the light-thermally induced spin current and mainly excited by spin Seebeck effect. Under low light-intensity illumination, light-thermally induced temperature gradient is very small so that spin Seebeck effect can be neglected. Furthermore, the mechanism on spin photovoltaic effect is fully elucidated, where the photo-generated spin current in Y3Fe5O12 mainly originates from the process of spin precession induced by photons. These findings provide some deep insights into the origin of light-induced spin current.

3.
ACS Appl Mater Interfaces ; 16(8): 9999-10008, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38361262

ABSTRACT

Li-rich layered oxides (LRLOs), with the advantages of high specific capacity and low cost, are considered as candidates for the next-generation cathode of lithium-ion batteries (LIBs). Unfortunately, sluggish kinetics and interfacial degradation lead to capacity loss and voltage decay of the material during cycling. To address these issues, we propose a Ni/Mg dual concentration-gradient modification strategy for LRLOs. From the center to the surface of the modified materials, the contents of Ni and Mg are gradually increased while the content of Mn is decreased. The high Ni content on the surface increases the proportion of cationic redox, elevating the operating voltage and accelerating reaction kinetics. Moreover, the doped Mg on the surface of the material acting as a stabilizing pillar suppresses the migration of transition metals, stabilizing the layered structure. Therefore, the material with the Ni/Mg dual concentration-gradients delivers a superior electrochemical performance, exhibiting a suppressed voltage decay of 2.8 mV per cycle during 200 cycles (1 C, 2-4.8 V) and an excellent rate capability of 94.84 mAh/g at 7C. This study demonstrates a synergic design to construct high-performance LRLO cathode materials for LIBs.

4.
Small Methods ; 8(3): e2301400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38009762

ABSTRACT

The commercialization of high-performance nickel-rich cathodes always awaits a cost-effective, environmentally friendly, and large-scale preparation method. Despite a grinding process normally adopted in the synthesis of the nickel-rich cathodes, lattice distortion, rough surface, and sharp edge transformation inevitably occurr in the resultant samples. In this work, an additional annealing process is proposed that aims at regulating lattice distortion as well as achieving round and smoother morphologies without any structural or elemental modifications. Such a structural enhancement is favored for improved lithium diffusion and electrochemical stability during cycling. Consequently, the annealed cathodes demonstrate a considerable enhancement in capacity retention, escalating from 68.7% to 91.9% after 100 cycles at 1 C. Additionally, the specific capacity is significantly increased from 64 to 142 mAh g-1 at 5 C when compared to the unannealed cathodes. This work offers a straightforward and effective approach for reinforcing the electrochemical properties of nickel-rich cathodes.

5.
J Phys Chem Lett ; 14(48): 10762-10768, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38010952

ABSTRACT

Bound states in the continuum (BICs) have emerged as a powerful platform for boosting light-matter interactions because they provide an alternative way of realizing optical resonances with ultrahigh quality factors, accompanied by extreme field confinement. In this work, we realized an optical biosensor by harnessing a quasi-BIC (qBIC) supported by an all-dielectric metasurface with broken symmetry, whose unit cell is composed of a silicon cuboid with two asymmetric air holes. Thanks to the excellent field confinement within the air gap of a metasurface enabled by such a high-Q qBIC, the figure of merit (FOM) of the biosensor is up to 2136.35 RIU-1. Futhermore, we demonstrated that such a high-Q metasurface can push the detection limit to a few virus particles. Our results may find exciting applications in extreme biochemical sensing like COVID-19 with ultralow concentrations.

6.
Nat Commun ; 14(1): 6847, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891166

ABSTRACT

Quasi-bound states in the continuum (QBICs) coupling into the propagating spectrum manifest themselves as high-quality factor (Q) modes susceptible to perturbations. This poses a challenge in predicting stable Fano resonances for realistic applications. Besides, where and when the maximum field enhancement occurs in real acoustic devices remains elusive. In this work, we theoretically predict and experimentally demonstrate the existence of a Friedrich-Wintgen BIC in an open acoustic cavity. We provide direct evidence for a QBIC by mapping the pressure field inside the cavity using a Laser Doppler Vibrometer (LDV), which provides the missing field enhancement data. Furthermore, we design a symmetry-reduced BIC and achieve field enhancement by a factor of about three compared to the original cavity. LDV measurements are a promising technique for obtaining high-Q modes' missing field enhancement data. The presented results facilitate the future applications of BICs in acoustics as high-intensity sound sources, filters, and sensors.

7.
Nano Lett ; 23(19): 9105-9113, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37694889

ABSTRACT

Achieving perfect absorption in few-layer two-dimensional (2D) materials plays a crucial role in applications such as optoelectronics and sensing. However, the underlying mechanisms of all reported works imply a strongly inherent dependence of the central wavelength on the structural parameters. Here, we propose a structure-parameter-deviation immune method for achieving perfect absorption at any desired wavelength by harnessing the toroidal dipole-bound state in the continuum (TD BIC). We experimentally demonstrate the versatile design with a monolayer-graphene-loaded compound grating structure. Such a TD BIC built upon the TE31 mode allows for the transition from BIC to quasi-BIC without breaking the structural symmetry, enabling the stable resonance wavelength while tailoring the quality factors via variation of the gap distance. Comparison with traditional literature further reveals the superiority of our method in realizing highly robust perfect absorption, with a wavelength stability ratio of >15. Remarkably, this approach can be straightforwardly applied to other 2D materials.

8.
Nat Commun ; 14(1): 3433, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301939

ABSTRACT

High quality(Q) factor optical resonators are indispensable for many photonic devices. While very large Q-factors can be obtained theoretically in guided-mode settings, free-space implementations suffer from various limitations on the narrowest linewidth in real experiments. Here, we propose a simple strategy to enable ultrahigh-Q guided-mode resonances by introducing a patterned perturbation layer on top of a multilayer-waveguide system. We demonstrate that the associated Q-factors are inversely proportional to the perturbation squared while the resonant wavelength can be tuned through material or structural parameters. We experimentally demonstrate such high-Q resonances at telecom wavelengths by patterning a low-index layer on top of a 220 nm silicon on insulator substrate. The measurements show Q-factors up to 2.39 × 105, comparable to the largest Q-factor obtained by topological engineering, while the resonant wavelength is tuned by varying the lattice constant of the top perturbation layer. Our results hold great promise for exciting applications like sensors and filters.


Subject(s)
Engineering , Photons , Silicon , Vibration
9.
Opt Express ; 31(8): 13125-13139, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157457

ABSTRACT

Active devices play a critical role in modern electromagnetic and photonics systems. To date, the epsilon (ε)-near-zero (ENZ) is usually integrated with the low Q-factor resonant metasurface to achieve active devices, and enhance the light-matter interaction significantly at the nanoscale. However, the low Q-factor resonance may limit the optical modulation. Less work has been focused on the optical modulation in the low-loss and high Q-factor metasurfaces. Recently, the emerging optical bound states in the continuum (BICs) provides an effective way for achieving high Q-factor resonators. In this work, we numerically demonstrate a tunable quasi-BICs (QBICs) by integrating a silicon metasurface with ENZ ITO thin film. Such a metasurface is composed of five square holes in a unit cell, and hosts multiple BICs by engineering the position of centre hole. We also reveal the nature of these QBICs by performing multipole decomposition and calculating near field distribution. Thanks to the large tunability of ITO's permittivity by external bias and high-Q factor enabled by QBICs, we demonstrate an active control on the resonant peak position and intensity of transmission spectrum by integrating ENZ ITO thin films with QBICs supported by silicon metasurfaces. We find that all QBICs show excellent performance on modulating the optical response of such a hybrid structure. The modulation depth can be up to 14.8 dB. We also investigate how the carrier density of ITO film influence the near-field trapping and far-field scattering, which in turn influence the performance of optical modulation based on this structure. Our results may find promising applications in developing active high-performance optical devices.

10.
Small ; 19(35): e2301165, 2023 08.
Article in English | MEDLINE | ID: mdl-37162455

ABSTRACT

Advanced sensing devices, highly sensitive, and reliable in detecting ultralow concentrations of circulating biomarkers, are extremely desirable and hold great promise for early diagnostics and real-time progression monitoring of diseases. Nowadays, the most commonly used clinical methods for diagnosing biomarkers suffer from complicated procedures and being time consumption. Here, a chip-based portable ultra-sensitive THz metasensor is reported by exploring quasi-bound states in the continuum (quasi-BICs) and demonstrate its capability for sensing low-concentration analytes. The designed metasensor is made of the designed split-ring resonator metasurface which supports magnetic dipole quasi-BIC combining functionalized gold nanoparticles (AuNPs) conjugated with the specific antibody. Attributed to the strong near-field enhancement near the surface of the microstructure enabled by the quasi-BICs, light-analyte interactions are greatly enhanced, and thus the device's sensitivity is boosted significantly. The system sensitivity slope is up to 674 GHz/RIU, allowing for repeatable resolving detecting ultralow concentration of C-reactive protein (CRP) and Serum Amyloid A (SAA), respectively, down to 1 pM. The results touch a range that cannot be achieved by ordinary immunological assays alone, offering a novel non-destructive and rapid trace measured approach for next-generation biomedical quantitative detection systems.


Subject(s)
Gold , Metal Nanoparticles , Antibodies , Biological Assay , Serum Amyloid A Protein
11.
Materials (Basel) ; 16(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36837138

ABSTRACT

In the welding process of thick-walled titanium alloys, the selection of the wire type is one of the critical factors affecting the welding quality. In this paper, flux-cored and cable wires were used as filler materials in the welding of thick-walled titanium alloys. The macrostructure, microstructure, texture, and grain size of both welded joints were compared by employing an optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM), and the tensile and impact properties were also evaluated. The comparison result showed that the fusion zone microstructure of both welded joints was dominated by a basketweave structure composed of interwoven acicular α' martensite, whereas the microstructure of flux-cored wire welded joints was finer, and the degree of anisotropy was low. The strength of both welded joints was higher than that of the base metal, ensuring that fracture occurred in the base metal area during tension. The Charpy impact energy of the flux-cored wire welded joint was 16.7% higher than that of the cable wire welded joint, indicating that the welded joint obtained with the flux-cored wire performed better in the welding process of thick-walled titanium alloys.

12.
ACS Appl Mater Interfaces ; 15(1): 1592-1600, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36541194

ABSTRACT

Nickel-rich layered oxides are promising cathode materials for high-energy-density lithium-ion batteries. Unfortunately, the interfacial instability and intergranular cracks result in fast capacity fading and voltage fading during battery cycling. To address these issues, a coherent spinel interphase in the grain boundary of LiNi0.6Co0.2Mn0.2O2 (NCM) was successfully constructed via solution infusion and heat treatment. The results showed that the spinel (LiMn2O4) interphase could significantly reduce the formation of intergranular cracks during cycling. Meanwhile, the spinel structure on the primary particles effectively suppressed surface degradation, realizing the reduction of interface charge-transfer resistance and electrochemical polarization. As a result, the spinel-modified NCM cathode materials display superior electrochemical cyclability. The 1 wt % spinel phase-modified NCM delivers a discharge capacity of 154.1 mAh g-1 after 300 cycles (1 C, 3-4.3 V) with an excellent capacity retention of 93%.

13.
Opt Lett ; 47(15): 3640-3643, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35913277

ABSTRACT

Monolayer transition metal dichalcogenides (TMDCs), like MoS2, MoSe2, WS2, and WSe2, feature direct bandgaps, strong spin-orbit coupling, and exciton-polariton interactions at the atomic scale, which could be harnessed for efficient light emission, valleytronics, and polaritonic lasing, respectively. Nevertheless, to build next-generation photonic devices that make use of these features, it is first essential to model the all-optical control mechanisms in TMDCs. Herein, a simple model is proposed to quantify the performance of a 35-µm-long Si3N4 waveguide-integrated all-optical MoSe2 modulator. Using this model, a switching energy of 14.6 pJ is obtained for a transverse-magnetic (TM) and transverse-electric (TE) polarized pump signals at λ = 480 nm. Moreover, maximal extinction ratios of 20.6 dB and 20.1 dB are achieved for a TM and TE polarized probe signal, respectively, at λ = 500 nm with an ultra-low insertion loss of <0.3 dB. Moreover, the device operates with an ultrafast recovery time of 50 ps, while maintaining a high extinction ratio for practical applications. These findings facilitate modeling and designing novel TMDC-based photonic devices.

14.
Microsc Microanal ; : 1-14, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35575050

ABSTRACT

This paper exploited an alternative approach to prepare high-quality speckle patterns by uniformly dispersing nano-silica particles onto sample surfaces, helping digital image correlation (DIC) acquire the maximum spatial resolution of local strain up to 92 nm. A case study was carried out by combining this speckle pattern fabrication method with SEM-DIC and electron backscattering diffraction (EBSD). Thus, in situ mapping of local strain with ultra-high spatial resolution and microstructure in commercially pure titanium during plastic deformation could be achieved, which favored revealing the effect of slip transfer on shear strain near grain boundaries. Moreover, the slip systems could be easily identified via the combination of the SEM-DIC and EBSD techniques even though no obvious deformation trace was captured in secondary electron images. Additionally, the complex geometric compatibility factor $( {m}^{\prime}_c)$ relating to geometric compatibility factors (mʹ) and Schmid factors was proposed to predict the shear strain (εxy) at grain boundaries.

15.
Adv Sci (Weinh) ; 9(20): e2200257, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35561061

ABSTRACT

Acoustic resonant cavities play a vital role in modern acoustical systems. The ultrahigh quality-factor resonances are highly desired for some applications such as high-resolution acoustic sensors and acoustic lasers. Here, a class of supercavity resonances is theoretically proposed and experimentally demonstrated in a coupled acoustic resonator system, arising from the merged bound states in the continuum (BICs) in geometry space. Their topological origin is demonstrated by explicitly calculating their topological charges before and after BIC merging, accompanied by charges annihilation. Compared with other types of BICs, they are robust to the perturbation brought by fabrication imperfection. Moreover, it is found that such supercavity modes can be linked with the Friedrich-Wintgen BICs supported by an entire rectangular (cuboid) resonator sandwiched between two rectangular (or circular) waveguides and thus more supercavity modes are constructed. Then, these coupled resonators are fabricated and such a unique phenomenon-moving, merging, and vanishing of BICs-is experimentally confirmed by measuring their reflection spectra, which show good agreement with the numerical simulation and theoretical prediction of mode evolution. The results may find exciting applications in acoustic and photonics, such as enhanced acoustic emission, filtering, and sensing.

16.
Light Sci Appl ; 11(1): 77, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35351851

ABSTRACT

As an elementary particle, a photon that carries information in frequency, polarization, phase, and amplitude, plays a crucial role in modern science and technology. However, how to retrieve the full information of unknown photons in an ultracompact manner over broad bandwidth remains a challenging task with growing importance. Here, we demonstrate a versatile photonic slide rule based on an all-silicon metasurface that enables us to reconstruct incident photons' frequency and polarization state. The underlying mechanism relies on the coherent interactions of frequency-driven phase diagrams which rotate at various angular velocities within broad bandwidth. The rotation direction and speed are determined by the topological charge and phase dispersion. Specifically, our metasurface leverages both achromatically focusing and azimuthally evolving phases with topological charges +1 and -1 to ensure the confocal annular intensity distributions. The combination of geometric phase and interference holography allows the joint manipulations of two distinct group delay coverages to realize angle-resolved in-pair spots in a transverse manner- a behavior that would disperse along longitudinal direction in conventional implementations. The spin-orbital coupling between the incident photons and vortex phases provides routing for the simultaneous identification of the photons' frequency and circular polarization state through recognizing the spots' locations. Our work provides an analog of the conventional slide rule to flexibly characterize the photons in an ultracompact and multifunctional way and may find applications in integrated optical circuits or pocketable devices.

17.
Opt Lett ; 47(6): 1549-1552, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35290361

ABSTRACT

Oligomer metasurfaces have attracted a lot of attention in recent years because of their ability to drive strong resonance effects. In this work, by perturbing the symmetry of the structure, we find that there are a large number of resonance modes in the oligomer metasurfaces associated with the optical bound states in the continuum (BICs) near the communication wavelength. When the positions of two nanodisks of the hexamer oligomers are moved along the x- or y-directions at the same time, the mirror symmetry is broken, and an electric quadrupole BIC and three magnetic dipole BICs are excited. The results of near-field distribution of three-dimensional nanodisks and far-field scattering of multiple dipoles in each quasi-BIC reveal that the four BICs present different optical characteristics. It is noted that the method of symmetry breaking by moving the position of nanodisks can accurately control the asymmetric parameter of symmetry-protected BICs, which provides a route for the realization of ultrahigh quality (Q)-factor oligomer metasurfaces in experiment.

18.
Rep Prog Phys ; 85(4)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-34939940

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from a few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.

19.
Nat Commun ; 12(1): 4819, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34376653

ABSTRACT

The ability of sound energy confinement with high-quality factor resonance is of vital importance for acoustic devices requiring high intensity and hypersensitivity in biological ultrasonics, enhanced collimated sound emission (i.e. sound laser) and high-resolution sensing. However, structures reported so far have been experimentally demonstrated with a limited quality factor of acoustic resonances, up to several tens in an open resonator. The emergence of bound states in the continuum makes it possible to realize high quality factor acoustic modes. Here, we report the theoretical design and experimental demonstration of acoustic bound states in the continuum supported by a single open resonator. We predicted that such an open acoustic resonator could simultaneously support three types of bound states in the continuum, including symmetry protected bound states in the continuum, Friedrich-Wintgen bound states in the continuum induced by mode interference, as well as a new type-mirror symmetry induced bound states in the continuum. We also experimentally demonstrated their existence with quality factor up to one order of magnitude greater than the highest quality factor reported in an open resonator.

20.
Nat Commun ; 12(1): 4390, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34282146

ABSTRACT

Geometrical symmetry plays a significant role in implementing robust, symmetry-protected, bound states in the continuum (BICs). However, this benefit is only theoretical in many cases since fabricated samples' unavoidable imperfections may easily break the stringent geometrical requirements. Here we propose an approach by introducing the concept of geometrical-symmetry-free but symmetry-protected BICs, realized using the static-like environment induced by a zero-index metamaterial (ZIM). We find that robust BICs exist and are protected from the disordered distribution of multiple objects inside the ZIM host by its physical symmetries rather than geometrical ones. The geometric-symmetry-free BICs are robust, regardless of the objects' external shapes and material parameters in the ZIM host. We further show theoretically and numerically that the existence of those higher-order BICs depends only on the number of objects. By practically designing a structural ZIM waveguide, the existence of BICs is numerically confirmed, as well as their independence on the presence of geometrical symmetry. Our findings provide a way of realizing higher-order BICs and link their properties to the disorder of photonic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...