Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(8): 112842, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37480566

ABSTRACT

Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , SARS-CoV-2/genetics , Drosophila , Actins , Animals, Genetically Modified
2.
Cell Rep ; 38(11): 110517, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35294868

ABSTRACT

Individuals with autism spectrum disorder (ASD) exhibit an increased burden of de novo mutations (DNMs) in a broadening range of genes. While these studies have implicated hundreds of genes in ASD pathogenesis, which DNMs cause functional consequences in vivo remains unclear. We functionally test the effects of ASD missense DNMs using Drosophila through "humanization" rescue and overexpression-based strategies. We examine 79 ASD variants in 74 genes identified in the Simons Simplex Collection and find 38% of them to cause functional alterations. Moreover, we identify GLRA2 as the cause of a spectrum of neurodevelopmental phenotypes beyond ASD in 13 previously undiagnosed subjects. Functional characterization of variants in ASD candidate genes points to conserved neurobiological mechanisms and facilitates gene discovery for rare neurodevelopmental diseases.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Drosophila , Neurodevelopmental Disorders , Receptors, Glycine , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Autistic Disorder/genetics , Drosophila/genetics , Genetic Predisposition to Disease , Humans , Neurodevelopmental Disorders/genetics , Receptors, Glycine/genetics
3.
BMC Genomics ; 17: 266, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27029637

ABSTRACT

BACKGROUND: Affymetrix Axiom single nucleotide polymorphism (SNP) arrays provide a cost-effective, high-density, and high-throughput genotyping solution for population-optimized analyses. However, no public software is available for the integrated genomic analysis of hybridization intensities and genotypes for this new-generation population-optimized genotyping platform. RESULTS: A set of statistical methods was developed for an integrated analysis of allele frequency (AF), allelic imbalance (AI), loss of heterozygosity (LOH), long contiguous stretch of homozygosity (LCSH), and copy number variation or alteration (CNV/CNA) on the basis of SNP probe hybridization intensities and genotypes. This study analyzed 3,236 samples that were genotyped using different SNP platforms. The proposed AF adjustment method considerably increased the accuracy of AF estimation. The proposed quick circular binary segmentation algorithm for segmenting copy number reduced the computation time of the original segmentation method by 30-67 %. The proposed CNV/CNA detection, which integrates AI and LOH/LCSH detection, had a promising true positive rate and well-controlled false positive rate in simulation studies. Moreover, our real-time quantitative polymerase chain reaction experiments successfully validated the CNVs/CNAs that were identified in the Axiom data analyses using the proposed methods; some of the validated CNVs/CNAs were not detected in the Affymetrix Array 6.0 data analysis using the Affymetrix Genotyping Console. All the analysis functions are packaged into the ALICE (AF/LOH/LCSH/AI/CNV/CNA Enterprise) software. CONCLUSIONS: ALICE and the used genomic reference databases, which can be downloaded from http://hcyang.stat.sinica.edu.tw/software/ALICE.html , are useful resources for analyzing genomic data from the Axiom and other SNP arrays.


Subject(s)
Genetics, Population/methods , Genotype , Hybridization, Genetic , Oligonucleotide Array Sequence Analysis/methods , Software , Allelic Imbalance , DNA Copy Number Variations , Gene Frequency , Homozygote , Humans , Loss of Heterozygosity , Models, Statistical , Polymorphism, Single Nucleotide
4.
BMC Genomics ; 11: 415, 2010 Jul 05.
Article in English | MEDLINE | ID: mdl-20602748

ABSTRACT

BACKGROUND: Allele frequency is one of the most important population indices and has been broadly applied to genetic/genomic studies. Estimation of allele frequency using genotypes is convenient but may lose data information and be sensitive to genotyping errors. RESULTS: This study utilizes a unified intensity-measuring approach to estimating individual-level allele frequencies for 1,104 and 1,270 samples genotyped with the single-nucleotide-polymorphism arrays of the Affymetrix Human Mapping 100K and 500K Sets, respectively. Allele frequencies of all samples are estimated and adjusted by coefficients of preferential amplification/hybridization (CPA), and large ethnicity-specific and cross-ethnicity databases of CPA and allele frequency are established. The results show that using the CPA significantly improves the accuracy of allele frequency estimates; moreover, this paramount factor is insensitive to the time of data acquisition, effect of laboratory site, type of gene chip, and phenotypic status. Based on accurate allele frequency estimates, analytic methods based on individual-level allele frequencies are developed and successfully applied to discover genomic patterns of allele frequencies, detect chromosomal abnormalities, classify sample groups, identify outlier samples, and estimate the purity of tumor samples. The methods are packaged into a new analysis tool, ALOHA (Allele-frequency/Loss-of-heterozygosity/Allele-imbalance). CONCLUSIONS: This is the first time that these important genetic/genomic applications have been simultaneously conducted by the analyses of individual-level allele frequencies estimated by a unified intensity-measuring approach. We expect that additional practical applications for allele frequency analysis will be found. The developed databases and tools provide useful resources for human genome analysis via high-throughput single-nucleotide-polymorphism arrays. The ALOHA software was written in R and R GUI and can be downloaded at http://www.stat.sinica.edu.tw/hsinchou/genetics/aloha/ALOHA.htm.


Subject(s)
Gene Frequency , Genome, Human , Genomics/methods , Humans , Polymorphism, Single Nucleotide , Software
5.
Hum Mutat ; 29(8): 1055-62, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18470944

ABSTRACT

Copy number variation (CNV) has become an important genomic structure element in the human population, and some CNVs are related to specific traits and diseases. Moreover, analysis of human genomes has been potentiated by the use of high-resolution microarrays that assess single nucleotide polymorphisms (SNPs). Although many programs have been designed to analyze data from Affymetrix SNP microarrays, they all have high false-positive rates (FPRs) in copy number (CN) analyses. Copy number analysis tool (CNAT) 4.0 is a recently developed program that offers improved CN estimation, but small amplifications and deletions are lost when using the smoothing procedure. Here, we propose a copy number inferring tool (CNIT) algorithm for the 100K SNP microarray to investigate CNVs at 29.6-kb resolution. CNIT estimated SNP allelic and total CN with reliable P values based on intensity data. In addition, the hidden Markov model (HMM) method was applied to predict regions having altered CN by considering contiguous SNPs. Based on a CN analysis of 23 unrelated Taiwanese and 30 HapMap Centre d'Etude du Polymorphisme Humain (CEPH) trios, CNIT showed higher accuracy and power than other programs. The FPRs and false-negative rates (FNRs) of CNIT were 0.1% and 0.16%, respectively. CNIT also showed better sensitivity for detecting small amplifications and deletions. Furthermore, DNA pooling of 10 and 30 normal unrelated individuals were applied to the 100K SNP microarray, respectively, and 12 common CN-variable regions were identified, suggesting that DNA pooling can be applied to discover common CNVs.


Subject(s)
Gene Dosage , Genome, Human , Software , Humans , Markov Chains , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sensitivity and Specificity
6.
BMC Bioinformatics ; 9: 196, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18412951

ABSTRACT

BACKGROUND: Microarray-based pooled DNA experiments that combine the merits of DNA pooling and gene chip technology constitute a pivotal advance in biotechnology. This new technique uses pooled DNA, thereby reducing costs associated with the typing of DNA from numerous individuals. Moreover, use of an oligonucleotide gene chip reduces costs related to processing various DNA segments (e.g., primers, reagents). Thus, the technique provides an overall cost-effective solution for large-scale genomic/genetic research. However, few publicly shared tools are available to systematically analyze the rapidly accumulating volume of whole-genome pooled DNA data. RESULTS: We propose a generalized concept of pooled DNA and present a user-friendly tool named Microarray Pooled DNA Analyzer (MPDA) that we developed to analyze hybridization intensity data from microarray-based pooled DNA experiments. MPDA enables whole-genome DNA preferential amplification/hybridization analysis, allele frequency estimation, association mapping, allelic imbalance detection, and permits integration with shared data resources online. Graphic and numerical outputs from MPDA support global and detailed inspection of large amounts of genomic data. Four whole-genome data analyses are used to illustrate the major functionalities of MPDA. The first analysis shows that MPDA can characterize genomic patterns of preferential amplification/hybridization and provide calibration information for pooled DNA data analysis. The second analysis demonstrates that MPDA can accurately estimate allele frequencies. The third analysis indicates that MPDA is cost-effective and reliable for association mapping. The final analysis shows that MPDA can identify regions of chromosomal aberration in cancer without paired-normal tissue. CONCLUSION: MPDA, the software that integrates pooled DNA association analysis and allelic imbalance analysis, provides a convenient analysis system for extensive whole-genome pooled DNA data analysis. The software, user manual and illustrated examples are freely available online at the MPDA website listed in the Availability and requirements section.


Subject(s)
Algorithms , Chromosome Mapping/methods , DNA/genetics , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods , Software , Base Sequence , Molecular Sequence Data
7.
Cancer Nurs ; 30(4): 278-84, 2007.
Article in English | MEDLINE | ID: mdl-17666976

ABSTRACT

Home death has a special cultural meaning for Taiwanese patients who are dying and their family members. However, very limited evidence has been presented on the impact of home death on caregiver bereavement outcomes. The purpose of this study was to explore the preference for place of death by Taiwanese patients dying of cancer and the actual place of death and to investigate the relationship between place of death of a patient and grief reactions of the family caregivers. This study consisted of 46 dying patients and 46 matched family caregivers (N = 92). The grief reaction was measured using the Texas Revised Inventory of Grief. Statistical analyses included descriptive statistics, t tests, logistic regression, and multiple regression. Most of the patients (74%) preferred to die at home; however, only 33% of family caregivers preferred the patient to die at home, and only 17% of patients actually died at home. Of these patients, 43% of their preferences were congruent with the actual place of death, whereas 79% of the family caregivers' preferences were congruent with the patients' actual place of death. Finally, the place of death was not a significant predictor of caregivers' grief reactions immediately after the loss of a loved one or at 1 month after the death occurred. This study provides important implications for future studies and clinical practice.


Subject(s)
Caregivers/psychology , Grief , Neoplasms , Palliative Care , Patient Satisfaction , Aged , Female , Home Care Services , Hospitals , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , Social Support
SELECTION OF CITATIONS
SEARCH DETAIL
...