Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Support Care Cancer ; 31(1): 43, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36525141

ABSTRACT

PURPOSE: The renewal and iteration of chemotherapy drugs have resulted in more frequent long-term remissions for patients with multiple myeloma (MM). MM has transformed into a chronic illness for many patients, but the cancer-related fatigue (CRF) of many MM convalescent patients experience is frequently overlooked. We investigated whether the accompanying treatment of family members would affect MM patients' CRF and explore their serum metabolomics, so as to provide clinicians with new ideas for identifying and treating CRF of MM patients. METHODS: This was a single-center study, and a total of 30 MM patients were included in the study. Patients were divided into two groups based on whether they have close family members accompanying them through the whole hospitalization treatment. These patients received regular chemotherapy by hematology specialists, and long-term follow-up was done by general practitioners. Patients' CRF assessment for several factors used the Chinese version of the Brief Fatigue Inventory (BFI-C). Face-to-face questionnaires were administered at a time jointly determined by the patient and the investigator. All questionnaires were conducted by a general practitioner. The LC-MS-based metabolomics analysis determined whether the patients' serum metabolites were related to their fatigue severity. A correlation analysis investigated the relationship between serum metabolites and clinical laboratory indicators. RESULTS: The fatigue severity of MM patients whose family members participated in the treatment process (group A) was significantly lower than patients whose family members did not participate in the treatment process (group B). There was a statistically significant difference (fatigue severity composite score: t = - 2.729, p = 0.011; fatigue interference composite score: t = - 3.595, p = 0.001). There were no differences between the two groups of patients' gender, age, regarding clinical staging, tumor burden, blood routine, biochemical, or coagulation indexes. There were 11 metabolites, including guanidine acetic acid (GAA), 1-(Methylthio)-1-hexanethiol, isoeucyl-asparagine, L-agaritine, tryptophyl-tyrosine, and betaine, which significantly distinguished the two groups of MM patients. GAA had the strongest correlation with patient fatigue, and the difference was statistically significant (fatigue severity composite score: r = 0.505, p = 0.0044; fatigue interference composite score: r = 0.576, p = 0.0009). The results showed that GAA negatively correlated with albumin (r = - 0.4151, p = 0.0226) and GGT (r = - 0.3766, p = 0.0402). Meanwhile, GAA positively correlated with PT (r = 0.385, p = 0.0473), and the difference was statistically significant. CONCLUSION: The study is the first to report that family presence throughout the whole hospitalization may alleviate CRF in MM patients. Moreover, the study evaluated serum metabolites linked to CRF in MM patients and found that CRF has a significant positive correlation with GAA. GAA may be a more sensitive biomarker than liver enzymes, PT, and serum albumin in predicting patient fatigue. While our sample may not represent all MM patients, it proposes a new entry point to help clinicians better identify and treat CRF in MM patients.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/complications , Multiple Myeloma/drug therapy , Fatigue/etiology , Fatigue/therapy , Surveys and Questionnaires
2.
Front Pharmacol ; 13: 794042, 2022.
Article in English | MEDLINE | ID: mdl-35721208

ABSTRACT

Metabolic abnormality has been considered to be the seventh characteristic in cancer cells. The potential prospect of using serum biomarkers metabolites to differentiate ALL from AML remains unclear. The purpose of our study is to probe whether the differences in metabolomics are related to clinical laboratory-related indicators. We used LC-MS-based metabolomics analysis to study 50 peripheral blood samples of leukemia patients from a single center. Then Chi-square test and T test were used to analyze the clinical characteristics, laboratory indicators and cytokines of 50 patients with leukemia. Correlation analysis was used to explore the relationship between them and the differential metabolites of different types of leukemia. Our study shows that it is feasible to better identify serum metabolic differences in different types and states of leukemia by metabolomic analysis on existing clinical diagnostic techniques. The metabolism of choline and betaine may also be significantly related to the patient's blood lipid profile. The main enrichment pathways for distinguishing differential metabolites in different types of leukemia are amino acid metabolism and fatty acid metabolism. All these findings suggested that differential metabolites and lipid profiles might identify different types of leukemia based on existing clinical diagnostic techniques, and their rich metabolic pathways help us to better understand the physiological characteristics of leukemia.

3.
Front Physiol ; 11: 595382, 2020.
Article in English | MEDLINE | ID: mdl-33281626

ABSTRACT

Alcoholic liver disease (ALD), a type of chronic liver disease that is prevalent worldwide, is still identified to have a poor prognosis despite many medical treatment protocols. Thus, it is urgent to develop and test new treatment protocols for ALD. Lactobacillus reuteri (L. reuteri) has been widely used in the clinical treatment of digestive system diseases, but studies on the protective effect of L. reuteri on ALD are considered to be rare. Therefore, in the present study, we examined the effect of L. reuteri on ALD and provide data that are significant in the development of new treatment protocols for ALD. An ALD model has been established in C57BL/6J mice treated according to the Gao-binge modeling method. Mice in the treatment group were administered with L. reuteri. Hematoxylin and eosin (H&E) staining, oil red O staining, immunohistochemistry, and biochemical analyses were performed to detect the phenotypic changes in the liver among mice in the different treatment groups. L. reuteri treatment reversed inflammatory cell infiltration and lipid accumulation. Moreover, AST, ALT, TG, and TCH levels were also reduced in the probiotics-treatment group. Five candidate biomarkers were found in the liver metabolites of different treatment groups by UPLC/QTOF-MS and a multivariate analysis. Several fatty acid metabolic pathways such as linoleic acid metabolism and glycerolipid metabolism were involved. All these findings suggested that L. reuteri treatment reversed the phenotype of ethanol-induced hepatitis and metabolic disorders. These findings provide evidence that L. reuteri might serve as a new therapeutic strategy for ALD.

4.
Front Physiol ; 11: 582801, 2020.
Article in English | MEDLINE | ID: mdl-33192594

ABSTRACT

Aspirin eugenol ester (AEE) is a new potential drug with anti-inflammatory and antioxidant stress pharmacological activity. Paraquat (PQ) is an effective and commercially important herbicide that is widely used worldwide. However, paraquat is highly toxic and can cause various complications and acute organ damage, such as liver, kidney and lung damage. The purpose of this study was to investigate whether AEE has a protective effect on hepatotoxicity induced by PQ in vivo and in vitro. Cell viability, apoptosis rate, mitochondrial function and intracellular oxidative stress were detected to evaluate the protective effect of AEE on PQ-induced BRL-3A (normal rat hepatocytes) cytotoxicity in vitro. In vivo, AEE pretreatment could attenuate oxidative stress and histopathological changes in rat liver induced by PQ. The results showed that AEE could reduce the hepatotoxicity induced by PQ in vivo and in vitro. AEE reduced PQ-induced hepatotoxicity by inhibitingoxidative stress and maintaining mitochondrial function. This study proved that AEE is an effective antioxidant and can reduce the hepatotoxicity of PQ.

5.
Animals (Basel) ; 10(5)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354125

ABSTRACT

The complex etiology, higher morbidity and mortality, poor prognosis, and expensive cost of calf diarrhea have made it a catastrophic disease in the dairy industry. This study aims to assess the biomarkers in calves with diarrhea and to predict the biomarkers related to the pathway. As subjects, nine calves with diarrhea and nine healthy calves were enrolled, according to strict enrollment criteria. The serum metabolites were detected by a liquid chromatographic tandem mass spectrometry (LC-MS/MS), and then analyzed by online multivariate statistical analysis software to further screen the biomarkers. In addition, the biomarkers involved in the metabolic pathways of calves with diarrhea and healthy calves were analyzed. In the serum of calves with diarrhea, nine biomarkers were found to which several biomarkers exhibited a certain relation. Moreover, these biomarkers were involved in important metabolic pathways, including protein digestion and absorption, ABC transporters, aminoacyl-tRNA biosynthesis, mineral absorption, and fatty acid biosynthesis. All these findings suggested that the imbalance of these markers was closely related to the occurrence and development of calf diarrhea. The targeted regulation of metabolic pathways involved in these biomarkers may facilitate the diagnosis, treatment, and discussion of the mechanism of calf diarrhea.

6.
Front Pharmacol ; 11: 588755, 2020.
Article in English | MEDLINE | ID: mdl-33658932

ABSTRACT

Aspirin eugenol ester (AEE) is a new potential pharmaceutical compound possessing anti-inflammatory, anti-cardiovascular disease, and antioxidative stress activity. The pharmacological activities of AEE are partly dependent on its regulation of cell apoptosis. However, it is still unclear how AEE inhibits cell apoptosis on the basis of its antioxidative stress effect. This study aimed to reveal the vascular antioxidative mechanism of AEE in response to H2O2-induced oxidative stress in HUVECs and paraquat-induced oxidative stress in rats. In the different intervention groups of HUVECs and rats, the expression of ASK1, ERK1/2, SAPK/JNK, and p38 and the phosphorylation levels of ERK1/2, SAPK/JNK, and p38 were measured. The effects of ASK1 and ERK1/2 on the anti-apoptotic activity of AEE in the oxidative stress model were probed using the corresponding inhibitors ASK1 and ERK1/2. The results showed that in the HUVECs, 200 µM H2O2 treatment significantly increased the phosphorylation of SAPK/JNK and the level of ASK1 but decreased the phosphorylation of ERK1/2, while in the HUVECs pretreated with AEE, the H2O2-induced changes were significantly ameliorated. The findings were observed in vitro and in vivo. Moreover, inhibition of ASK1 and ERK1/2 showed that ASK1 plays a vital role in the protective effect of AEE on H2O2-induced apoptosis. All findings suggested that AEE protects the vascular endothelium from oxidative injury by mediating the ASK1 pathway.

7.
Acta Physiol (Oxf) ; 228(1): e13351, 2020 01.
Article in English | MEDLINE | ID: mdl-31344326

ABSTRACT

Oxidative stress is recognized as free radical dyshomeostasis, which has damaging effects on proteins, lipids and DNA. However, during cell differentiation and proliferation and other normal physiological processes, free radicals play a pivotal role in message transmission and are considered important messengers. Organisms maintain free radical homeostasis through a sophisticated regulatory system in which these "2-faced" molecules play appropriate roles under physiological and pathological conditions. Reactive oxygen species (ROS), including a large number of free radicals, act as redox signalling molecules in essential cellular signalling pathways, including cell differentiation and proliferation. However, excessive ROS levels can induce oxidative stress, which is an important risk factor for diabetes, cancer and cardiovascular disease. An overall comprehensive understanding of ROS is beneficial for understanding the pathogenesis of certain diseases and finding new therapeutic treatments. This review primarily focuses on ROS cellular localization, sources, chemistry and molecular targets to determine how to distinguish between the roles of ROS as messengers and in oxidative stress.


Subject(s)
Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Animals , Gene Expression Regulation , Oxidation-Reduction , Reactive Nitrogen Species
8.
Oxid Med Cell Longev ; 2019: 8098135, 2019.
Article in English | MEDLINE | ID: mdl-31583045

ABSTRACT

The oxidative stress of vessel endothelium is a major risk factor of cardiovascular disorders. Antioxidative stress drugs are widely used in cardiovascular therapy. Aspirin eugenol ester (AEE) is a new pharmaceutical compound synthesized by esterification reaction of aspirin with eugenols and possesses antioxidative activity. The present study was designed to investigate the mechanism how AEE protects human umbilical vein endothelial cells (HUVECs) from H2O2-induced oxidative stress. H2O2 was given to the HUVECs with or without AEE pretreatment. Changes in the oxidative stress-related factors, including those related to the mitochondria-lysosome axis, were determined with Western blotting, cellular immunofluorescence, and enzyme activity test. The results showed that, in the HUVECs, 300 µM H2O2 treatment significantly increased the apoptosis rate, MDA concentration, reactive oxygen species (ROS) production, mitochondrial membrane potential, expression of Bax and mature cathepsin D (CTSD), and activity of CTSD and Caspase3 (Cas3) but decreased the expression of Bcl2 and lysosomal membrane stability, while in the HUVECs pretreated with AEE, the above changes caused by either the stimulatory or the inhibitory effect of H2O2 on the relevant factors were significantly reduced. AEE pretreatment significantly enhanced the activity of cellular superoxide dismutase and glutathione peroxidase in the HUVECs. Our findings suggest that AEE effectively reduced H2O2-induced oxidative stress in the HUVECs via mitochondria-lysosome axis.


Subject(s)
Aspirin/analogs & derivatives , Eugenol/analogs & derivatives , Human Umbilical Vein Endothelial Cells/drug effects , Hydrogen Peroxide/adverse effects , Lysosomes/metabolism , Mitochondria/metabolism , Oxidative Stress/drug effects , Aspirin/pharmacology , Aspirin/therapeutic use , Eugenol/pharmacology , Eugenol/therapeutic use , Humans
9.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261711

ABSTRACT

Aspirin eugenol ester (AEE) possesses anti-thrombotic, anti-atherosclerotic and anti-oxidative effects. The study aims to clarify the mechanism underlying the anti-atherosclerotic effects of AEE on vascular endothelial dysfunction. Both the high-fat diet (HFD)-induced atherosclerotic rat model and the H2O2-induced human umbilical vein endothelial cells (HUVECs) model were used to investigate the effects of AEE on vascular endothelial dysfunction. UPLC/QTOF-MS coupled with a multivariate data analysis method were used to profile the variations in the metabolites of HUVECs in response to different treatments. Pretreatment of HUVECs with AEE significantly ameliorated H2O2-induced apoptosis, the overexpression of E-selectin and VCAM-1, and the adhesion of THP-1 cells. Putative endogenous biomarkers associated with the inhibition of endothelial dysfunction were identified in HUVECs pretreated with AEE in the absence or presence of H2O2, and these biomarkers were involved in important metabolic pathways, including amino acid metabolism, carbohydrate metabolism, and glutathione metabolism. Moreover, in vivo, AEE also significantly reduced vascular endothelial dysfunction and decreased the overexpression of VCAM-1 and E-selectin. Based on our findings, the mechanism underlying the anti-atherosclerotic effects of AEE might be related to a reduction in vascular endothelial dysfunction mediated by ameliorating alterations in metabolism, inhibiting oxidative stress, and decreasing the expression of adhesion molecules.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/analogs & derivatives , Endothelium, Vascular/drug effects , Eugenol/analogs & derivatives , Plaque, Atherosclerotic/drug therapy , Platelet Aggregation Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Apoptosis , Aspirin/pharmacology , Aspirin/therapeutic use , Cell Line , Cells, Cultured , Diet, High-Fat/adverse effects , E-Selectin/metabolism , Endothelium, Vascular/metabolism , Eugenol/pharmacology , Eugenol/therapeutic use , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Metabolome , Platelet Aggregation Inhibitors/therapeutic use , Rats , Rats, Sprague-Dawley , Vascular Cell Adhesion Molecule-1/metabolism
10.
Br J Pharmacol ; 176(7): 906-918, 2019 04.
Article in English | MEDLINE | ID: mdl-30706438

ABSTRACT

BACKGROUND AND PURPOSE: Aspirin eugenol ester (AEE) is a new drug compound synthesized by combining aspirin with eugenol. It was reported to possess anti-thrombotic, anti-atherosclerotic, and anti-oxidative effects. However, its molecular mechanism against oxidative injury is unclear. This study investigated how AEE affected the oxidative injury of vascular endothelial cells in vivo and in vitro. EXPERIMENTAL APPROACH: A hamster model of atherosclerosis induced by a high fat diet (HFD) and an in vitro model of oxidative stress, H2 O2 -induced apoptosis of HUVECs, were used to investigate the anti-oxidative effects of AEE. KEY RESULTS: AEE significantly reduced the stimulatory effect of HFD on malondialdehyde, the inhibitory effect of HFD on SOD activity and GSH/GSSG ratio, and the overexpression of inducible NOS (iNOS) in the aorta. In vitro, incubation of HUVECs with H2 O2 led their apoptosis, dysfunctions of the NO systems (including increased iNOS activity, decreased endothelial NOS activity, and increased production of NO), an imbalance in calcium homeostasis and energy metabolism with an increase in intracellular free calcium and decrease in ATP, and a down-regulation of Nrf2. In contrast, in the HUVECs pretreated with 1 µM AEE for 24 hr, the above adverse effects induced by H2 O2 were significantly ameliorated. Moreover, the decrease in NO production and activity of iNOS induced by AEE was significantly attenuated in Nrf2-inhibited HUVECs. CONCLUSION AND IMPLICATION: AEE protects vascular endothelial cells from oxidative injury by regulating NOS and Nrf2 signalling pathways. This suggests that AEE is a novel potential agent for the prevention of atherosclerosis.


Subject(s)
Aspirin/analogs & derivatives , Atherosclerosis/metabolism , Eugenol/analogs & derivatives , Human Umbilical Vein Endothelial Cells/drug effects , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase/metabolism , Oxidative Stress/drug effects , Animals , Aspirin/pharmacology , Atherosclerosis/prevention & control , Cells, Cultured , Cricetinae , Diet, High-Fat , Eugenol/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , NF-E2-Related Factor 2/genetics , Nitric Oxide/metabolism
11.
Eur J Pharmacol ; 852: 1-13, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-30797789

ABSTRACT

Aspirin eugenol ester (AEE) was a promising drug candidate for treating inflammation, pain and fever and preventing cardiovascular diseases with fewer side effects than its precursors. Previous researches indicated that AEE could markedly inhibit agonist-induced platelet aggregation in vitro and ex vivo, however, the anti-platelet aggregation mechanisms of AEE remain to be defined. Here, AEE in vitro effects on agonist-induced granule-secretion, intercellular Ca2+ mobilization and thromboxane A2 (TXA2) generation were examined. Vasodilator-stimulated phosphoprotein (VASP), mitogen-activated protein kinase (MAPK), Akt, Sirt 1 and CD40L expressions were also studied. In agonist-activated platelets in vitro, AEE markedly attenuated granule secretion markers (P-selectin expression and ATP release), intercellular Ca2+ mobilization and thromboxane B2 (TXB2) formation. AEE also attenuated CD40L activation, suppressed extracellular-signal-regulated protein kinase 2 (ERK2), c-Jun N-terminal kinase 1 (JNK1) and Akt phosphorylation, and recovered Sirt1 expression, but the activation of p38, VASPSer157 and VASPSer239, and the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were not affected by AEE. Overall, this study demonstrates that AEE inhibits agonist-induced platelet aggregation in vitro by regulating PI3K/Akt, MAPK and Sirt 1/CD40L pathways.


Subject(s)
Aspirin/analogs & derivatives , CD40 Ligand/metabolism , Eugenol/analogs & derivatives , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Platelet Aggregation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Sirtuin 1/metabolism , Animals , Aspirin/pharmacology , Calcium/metabolism , Caspase 3/metabolism , Cell Adhesion Molecules/metabolism , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Eugenol/pharmacology , Gene Expression Regulation/drug effects , Intracellular Space/drug effects , Intracellular Space/metabolism , L-Lactate Dehydrogenase/metabolism , Male , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , Phosphorylation/drug effects , Rats , Rats, Wistar , Thromboxane A2/biosynthesis
12.
PLoS One ; 13(2): e0192992, 2018.
Article in English | MEDLINE | ID: mdl-29447243

ABSTRACT

Porcine epidemic diarrhea, a disastrous gastrointestinal disease, causes great financial losses due to its high infectivity, morbidity and mortality in suckling piglets despite the development and application of various vaccines. In this study, high-throughput sequencing was used to explore differences in the intestinal microbiota between uninfected piglets and piglets infected with porcine epidemic diarrhea virus (PEDV). The results revealed that the small intestinal microbiota of suckling piglets infected with PEDV showed low diversity and was dominated by Proteobacteria (49.1%). Additionally, the composition of the small intestinal microbiota of sucking piglets infected with PEDV showed marked differences from that of the uninfected piglets. Some of the taxa showing differences in abundance between uninfected piglets and piglets infected with PEDV were associated with cellular transport and catabolism, energy metabolism, the biosynthesis of other secondary metabolites, and amino acid metabolism as determined through the prediction of microbial function based on the bacterial 16S rRNA gene. Therefore, adjusting the intestinal microbiota might be a promising method for the prevention or treatment of PEDV.


Subject(s)
Coronavirus Infections/veterinary , Gastrointestinal Microbiome , Porcine epidemic diarrhea virus , Swine Diseases/microbiology , Animals , Animals, Newborn , Coronavirus Infections/microbiology , Gastrointestinal Microbiome/genetics , Intestine, Small/microbiology , Milk/chemistry , Phylogeny , RNA, Bacterial , RNA, Ribosomal, 16S , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...