Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Article in English | MEDLINE | ID: mdl-38629469

ABSTRACT

BACKGROUND: Riemerella anatipestifer encodes an iron acquisition system, but whether it encodes the iron efflux pump and its role in antibiotic resistance are largely unknown. OBJECTIVES: To screen and identify an iron efflux gene in R. anatipestifer and determine whether and how the iron efflux gene is involved in antibiotic resistance. METHODS: In this study, gene knockout, streptonigrin susceptibility assay and inductively coupled plasma mass spectrometry were used to screen for the iron efflux gene ietA. The MIC measurements, scanning electron microscopy and reactive oxygen species (ROS) detection were used to verify the role of IetA in aztreonam resistance and its mechanism. Mortality and colonization assay were used to investigate the role of IetA in virulence. RESULTS: The deletion mutant ΔietA showed heightened susceptibility to streptonigrin, and prominent intracellular iron accumulation was observed in ΔfurΔietA under excess iron conditions. Additionally, ΔietA exhibited increased sensitivity to H2O2-produced oxidative stress. Under aerobic conditions with abundant iron, ΔietA displayed increased susceptibility to the ß-lactam antibiotic aztreonam due to heightened ROS production. However, the killing efficacy of aztreonam was diminished in both WT and ΔietA under anaerobic or iron restriction conditions. Further experiments demonstrated that the efficiency of aztreonam against ΔietA was dependent on respiratory complexes Ⅰ and Ⅱ. Finally, in a duckling model, ΔietA had reduced virulence compared with the WT. CONCLUSION: Iron efflux is critical to alleviate oxidative stress damage and ß-lactam aztreonam killing in R. anatipestifer, which is linked by cellular respiration.

2.
Int Immunopharmacol ; 132: 111939, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608471

ABSTRACT

BACKGROUND: In this study, we investigated whether Exo regulate the proliferation and invasion of PC. METHODS: In this study, we isolated the Eriobotrya japonica Exo using Ultra-high speed centrifugal method. Mass spectrum were used for Exo active components analysis. PC (Capan-1 and Bxpc-3) cells proliferation, migration, and apoptosis were detected using CCK8, ethynyldeoxyuridine, transwell, wound healing, and flow cytometry analyses. We also constructed a lung metastatic mouse model and subcutaneous tumor model to illustrate the regulation effect of Exo or active components. Proteomics were used to reveal the regulatory mechanism responsible for the observed effects. RESULTS: We isolated Eriobotrya japonica Exo and found that Exo treatment significantly suppressed cell migration and proliferation in both in vivo and in vitro using Capan-1. Mass spectrum for Exo active components analysis found that Exo contains high amounts of corosolic acid (CRA). The further study found that CRA treatment inhibit the proliferation, migration, and increased cell death of both Capan-1 and Bxpc-3 cells in a concentration-dependent manner. In vivo experiments confirmed that CRA inhibited pulmonary metastasis by decreasing the number of metastatic foci. Cell proteomics analysis showed that CRA treatment induced spermidine/spermine N1-acetyltransferase 1 (SAT1)-dependent ferroptosis. Treatment with the ferroptosis suppressor ferrostatin-1 significantly reversed CRA-induced cell apoptosis. CONCLUSION: The data suggested that corosolic acid delivered by exosomes from Eriobotrya japonica decreased pancreatic cancer cell proliferation and invasion by inducing SAT1-mediated ferroptosis.


Subject(s)
Acetyltransferases , Cell Proliferation , Eriobotrya , Exosomes , Ferroptosis , Lung Neoplasms , Pancreatic Neoplasms , Animals , Ferroptosis/drug effects , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Humans , Cell Proliferation/drug effects , Exosomes/metabolism , Mice , Cell Line, Tumor , Acetyltransferases/metabolism , Acetyltransferases/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Cell Movement/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use , Neoplasm Invasiveness , Xenograft Model Antitumor Assays , Mice, Nude , Mice, Inbred BALB C , Male , Apoptosis/drug effects
3.
Front Immunol ; 15: 1337528, 2024.
Article in English | MEDLINE | ID: mdl-38375484

ABSTRACT

Introduction: The comorbidity of optic neuritis with multiple sclerosis has been well recognized. However, the causal association between multiple sclerosis and optic neuritis, as well as other eye disorders, remains incompletely understood. To address these gaps, we investigated the genetically relationship between multiple sclerosis and eye disorders, and explored potential drugs. Methods: In order to elucidate the genetic susceptibility and causal links between multiple sclerosis and eye disorders, we performed two-sample Mendelian randomization analyses to examine the causality between multiple sclerosis and eye disorders. Additionally, causal single-nucleotide polymorphisms were annotated and searched for expression quantitative trait loci data. Pathway enrichment analysis was performed to identify the possible mechanisms responsible for the eye disorders coexisting with multiple sclerosis. Potential therapeutic chemicals were also explored using the Cytoscape. Results: Mendelian randomization analysis revealed that multiple sclerosis increased the incidence of optic neuritis while reducing the likelihood of concurrent of cataract and macular degeneration. Gene Ontology enrichment analysis implicated that lymphocyte proliferation, activation and antigen processing as potential contributors to the pathogenesis of eye disorders coexisting with multiple sclerosis. Furthermore, pharmaceutical agents traditionally employed for allograft rejection exhibited promising therapeutic potential for the eye disorders coexisting with multiple sclerosis. Discussion: Multiple sclerosis genetically contributes to the development of optic neuritis while mitigating the concurrent occurrence of cataract and macular degeneration. Further research is needed to validate these findings and explore additional mechanisms underlying the comorbidity of multiple sclerosis and eye disorders.


Subject(s)
Cataract , Macular Degeneration , Multiple Sclerosis , Optic Neuritis , Humans , Genetic Predisposition to Disease , Multiple Sclerosis/epidemiology , Multiple Sclerosis/genetics , Multiple Sclerosis/complications , Optic Neuritis/epidemiology , Optic Neuritis/genetics , Mendelian Randomization Analysis
4.
Discov Oncol ; 15(1): 45, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383815

ABSTRACT

OBJECTIVE: Our current study aimed to assess the relationship between TNF-related apoptosis-inducing ligand (TRAIL) and ferroptosis in non-small cell lung cancer (NSCLC) development. METHODS: The expression of TRAIL was detected by western blot, RT-qRCR and immunohistochemistry. The viability of NSCLC cells was analyzed by CCK-8 kit. The migration and invasion of NSCLC cells were detected by wound healing assay and transwell assay, respectively. Labile iron pool (LIP) was detected based on the calcein-acetoxymethyl ester method. Ferrous iron (Fe2+) and iron levels were assessed by detection kits. The levels of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were measured using corresponding detection kits. Mice tumor xenograft models were used for the in vivo research. RESULTS: The expression of TRAIL was reduced in H1299, NCL-H1395, and A549 cells compared with BEAS-2B cells. The up-regulation of TRAIL expression significantly reduced cell viability, invasion, and migration of H1299 and A549 cells. TRAIL reduced the expression of ferroptosis-related genes (FTH1, GPX4, and SLC7A11), increased the levels of LIP, iron, and Fe2+, and promoted lipid peroxidation, thereby predisposing NSCLC cells to ferroptosis. TRAIL up-regulated the expression of phosphate modification of ASK-1 and JNK. ASKI-1 inhibitor GS-4977 attenuated the effects of TRAIL on the viability, migration, invasion, and ferroptosis of H1299 cells. Furthermore, TRAIL further suppressed tumor growth and ferroptosis in mice tumor xenograft models. CONCLUSION: We indicated that overexpression of TRAIL induced ferroptosis in NSCLC cells and exerted anti-tumor effects. Mechanistically, TRAIL promoted ferroptosis by the activation of the ASK-1/JNK1 pathway. Our results may provide new therapeutic strategies for NSCLC.

5.
Org Lett ; 26(6): 1212-1217, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38300133

ABSTRACT

As an inexpensive industrial chemical, chlorodifluoromethane (Freon-22), despite its relatively low reactivity, can serve as a practical CF2 source for the construction of gem-difluorinated ring structures. Here, we develop a protocol for the efficient assembly of valuable fluorinated 2,3-dihydrobenzofurans from the [4 + 1] annulation in good yields under basic conditions. The reliable practicability and scalability of the process have also been demonstrated by preparation at the multigram scale, late-stage modifications of pharmaceutical molecules, and potential antitumor potency.


Subject(s)
Benzofurans , Chlorofluorocarbons, Methane , Chlorofluorocarbons , Hydrocarbons, Fluorinated
6.
Diabetes ; 73(4): 637-645, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38190589

ABSTRACT

Human genetic variation in PPARGC1B has been associated with adiposity, but the genetic variants that affect PPARGC1B expression have not been experimentally determined. Here, guided by previous observational data, we used clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) to scarlessly edit the alleles of the candidate causal genetic variant rs10071329 in a human brown adipocyte cell line. Switching the rs10071329 genotype from A/A to G/G enhanced PPARGC1B expression throughout the adipogenic differentiation, identifying rs10071329 as a cis-expression quantitative trait loci (eQTL). The higher PPARGC1B expression in G/G cells coincided with greater accumulation of triglycerides and higher expression of mitochondria-encoded genes, but without significant effects on adipogenic marker expression. Furthermore, G/G cells had improved basal- and norepinephrine-stimulated mitochondrial respiration, possibly relating to enhanced mitochondrial gene expression. The G/G cells also exhibited increased norepinephrine-stimulated glycerol release, indicating improved lipolysis. Altogether, our results showed that rs10071329 is a cis-eQTL, with the G/G genotype conferring enhanced PPARGC1B expression, with consequent improved mitochondrial function and response to norepinephrine in brown adipocytes. This genetic variant, and as yet undetermined eQTLs, at PPARGC1B could prove useful in genotype-based precision medicine for obesity treatment.


Subject(s)
Adipocytes, Brown , Adiposity , Humans , Adipocytes, Brown/metabolism , Adiposity/genetics , Obesity/metabolism , Genetic Variation , Norepinephrine , RNA-Binding Proteins/genetics
7.
Anticancer Drugs ; 35(1): 46-54, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37449977

ABSTRACT

Protein degraders are currently under rapid development as a promising modality for drug discovery. They are compounds that orchestrate interactions between a target protein and an E3 ubiquitin ligase, prompting intracellular protein degradation through proteasomal pathway. More protein degraders identification will greatly promote the development of this field. BAG3 is widely recognized as an excellent therapeutic target in cancer treatments. Exploring protein degraders that target BAG3 degradation has profound implications. Herein, molecular docking was applied to assess binding energy between 81 clinical phase I kinase inhibitors and BAG3. BAG3 protein and mRNA level were detected by western blot and quantitative real-time PCR. CCK8 assay and colony formation assay were applied to detect the cell viability and proliferation rate. Cell death was accessed using flow cytometry combined with PI and Annexin V double staining. AZD7762, a Chk1 kinase inhibitor, was identified to induce BAG3 degradation in a ubiquitin-proteasome pathway. AZD7762-induced BAG3 degradation was not dependent on Chk1 expression or activity. CRBN, an E3 ligase, was identified to bind to BAG3 and mediated BAG3 ubiquitination in the presence of AZD7762. By targeting Chk1 and BAG3, two ideal therapeutic targets in cancer treatment, AZD7762 would be a powerful chemotherapy agent in the future.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin-Protein Ligases , Humans , Proteasome Endopeptidase Complex/metabolism , Cell Line, Tumor , Molecular Docking Simulation , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism
8.
Invest Ophthalmol Vis Sci ; 64(15): 12, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38079167

ABSTRACT

Purpose: Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is a predominant pathological process underlying fibrotic cataracts. Here we investigated the role and mechanism of lanosterol synthase (LSS), a key rate-limiting enzyme in sterol biosynthesis, in EMT of LECs. Methods: Human lens epithelial explants, primary rabbit LECs, and whole rat lenses were treated with TGFß2. RNA-sequencing was conducted to explore genetic changes during fibrosis of human lens epithelial explants. Loss- and gain-of-function studies were performed in primary LECs to investigate roles and mechanisms of LSS, lanosterol and sterol regulatory element binding transcription protein 1 (SREBP1) in EMT. Rat lenses were applied to evaluate the potential effect of lanosterol on lens fibrosis. Expression of LSS, SREBP1, EMT-related regulators, and markers were analyzed by Western blot, qRT-PCR, or immunofluorescent staining. Results: LSS and steroid biosynthesis were downregulated in TGFß2-induced lens fibrosis. LSS inhibition directly triggered EMT by inducing Smad2/3 phosphorylation and nucleus translocation, an overexpression of LSS protected LECs from EMT by inhibiting Smad2/3 activation. Moreover, LSS inhibition decreased the expression of SREBP1, which regulated EMT via intervening TGFß2/Smad2/3 transduction. Furthermore, lanosterol protected LECs from EMT caused by both TGFß2 treatment and LSS inhibition via suppressing Smad2/3 activation and maintained lens transparency by preventing fibrotic plaques formation. Conclusions: We first identified that LSS protected LECs from EMT and played an antifibrotic role to maintain lens transparency. Additionally, lanosterol and sterol biosynthesis regulation might be promising strategies for preventing and treating fibrotic cataracts.


Subject(s)
Cataract , Lens, Crystalline , Animals , Humans , Rabbits , Rats , Cataract/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Fibrosis , Lanosterol/metabolism , Lanosterol/pharmacology , Lens, Crystalline/metabolism , Transforming Growth Factor beta2/metabolism
9.
Microbiol Spectr ; 11(4): e0137323, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37272830

ABSTRACT

The bacterium Riemerella anatipestifer requires iron for growth, but the mechanism of iron uptake is not fully understood. In this study, we disrupted the Feo system and characterized its function in iron import in R. anatipestifer ATCC 11845. Compared to the parent strain, the growth of the ΔfeoA, ΔfeoB, and ΔfeoAB strains was affected under Fe3+-limited conditions, since the absence of the feo system led to less intracellular iron than in the parent strain. In parallel, the ΔfeoAB strain was shown to be less sensitive to streptonigrin, an antibiotic that requires free iron to function. The sensitivity of the ΔfeoAB strain to hydrogen peroxide was also observed to be diminished compared with that of the parent strain, which could be related to the reduced intracellular iron content in the ΔfeoAB strain. Further research revealed that feoA and feoB were directly regulated by iron through the Fur regulator and that the transcript levels of feoA and feoB were significantly increased in medium supplemented with 1 mM MnCl2, 400 µM ZnSO4, and 200 µM CuCl2. Finally, it was shown that the ΔfeoAB strain of R. anatipestifer ATCC 11845 was significantly impaired in its ability to colonize the blood, liver, and brain of ducklings. Taken together, these results demonstrated that FeoAB supports ferrous iron acquisition in R. anatipestifer and plays an important role in R. anatipestifer colonization. IMPORTANCE In Gram-negative bacteria, the Feo system is an important ferrous iron transport system. R. anatipestifer encodes an Feo system, but its function unknown. As iron uptake may be required for oxidative stress protection and virulence, understanding the contribution of iron transporters to these processes is crucial. This study showed that the ΔfeoAB strain is debilitated in its ability to import iron and that its intracellular iron content was constitutively low, which enhanced the resistance of the deficient strain to H2O2. We were surprised to find that, in addition to responding to iron, the Feo system may play an important role in sensing manganese, zinc, and copper stress. The reduced colonization ability of the ΔfeoAB strain also sheds light on the role of iron transporters in host-pathogen interactions. This study is important for understanding the cross talk between iron and other metal transport pathways, as well as the pathogenic mechanism in R. anatipestifer.


Subject(s)
Bacterial Proteins , Hydrogen Peroxide , Virulence , Bacterial Proteins/metabolism , Hydrogen Peroxide/metabolism , Iron/metabolism , Membrane Transport Proteins/metabolism
10.
Diabetologia ; 66(7): 1289-1305, 2023 07.
Article in English | MEDLINE | ID: mdl-37171500

ABSTRACT

AIMS/HYPOTHESIS: PPARGC1A encodes peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), a central regulator of energy metabolism and mitochondrial function. A common polymorphism in PPARGC1A (rs8192678, C/T, Gly482Ser) has been associated with obesity and related metabolic disorders, but no published functional studies have investigated direct allele-specific effects in adipocyte biology. We examined whether rs8192678 is a causal variant and reveal its biological function in human white adipose cells. METHODS: We used CRISPR-Cas9 genome editing to perform an allelic switch (C-to-T or T-to-C) at rs8192678 in an isogenic human pre-adipocyte white adipose tissue (hWAs) cell line. Allele-edited single-cell clones were expanded and screened to obtain homozygous T/T (Ser482Ser), C/C (Gly482Gly) and heterozygous C/T (Gly482Ser) isogenic cell populations, followed by functional studies of the allele-dependent effects on white adipocyte differentiation and mitochondrial function. RESULTS: After differentiation, the C/C adipocytes were visibly less BODIPY-positive than T/T and C/T adipocytes, and had significantly lower triacylglycerol content. The C allele presented a dose-dependent lowering effect on lipogenesis, as well as lower expression of genes critical for adipogenesis, lipid catabolism, lipogenesis and lipolysis. Moreover, C/C adipocytes had decreased oxygen consumption rate (OCR) at basal and maximal respiration, and lower ATP-linked OCR. We determined that these effects were a consequence of a C-allele-driven dysregulation of PGC-1α protein content, turnover rate and transcriptional coactivator activity. CONCLUSIONS/INTERPRETATION: Our data show allele-specific causal effects of the rs8192678 variant on adipogenic differentiation. The C allele confers lower levels of PPARGC1A mRNA and PGC-1α protein, as well as disrupted dynamics of PGC-1α turnover and activity, with downstream effects on cellular differentiation and mitochondrial function. Our study provides the first experimentally deduced insights on the effects of rs8192678 on adipocyte phenotype.


Subject(s)
Adipocytes, White , Lipogenesis , Humans , Alleles , Lipogenesis/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Adipocytes, White/metabolism , Cell Differentiation/genetics
11.
Elife ; 122023 03 06.
Article in English | MEDLINE | ID: mdl-36876906

ABSTRACT

Genetic variation at the MTIF3 (Mitochondrial Translational Initiation Factor 3) locus has been robustly associated with obesity in humans, but the functional basis behind this association is not known. Here, we applied luciferase reporter assay to map potential functional variants in the haplotype block tagged by rs1885988 and used CRISPR-Cas9 to edit the potential functional variants to confirm the regulatory effects on MTIF3 expression. We further conducted functional studies on MTIF3-deficient differentiated human white adipocyte cell line (hWAs-iCas9), generated through inducible expression of CRISPR-Cas9 combined with delivery of synthetic MTIF3-targeting guide RNA. We demonstrate that rs67785913-centered DNA fragment (in LD with rs1885988, r2 > 0.8) enhances transcription in a luciferase reporter assay, and CRISPR-Cas9-edited rs67785913 CTCT cells show significantly higher MTIF3 expression than rs67785913 CT cells. Perturbed MTIF3 expression led to reduced mitochondrial respiration and endogenous fatty acid oxidation, as well as altered expression of mitochondrial DNA-encoded genes and proteins, and disturbed mitochondrial OXPHOS complex assembly. Furthermore, after glucose restriction, the MTIF3 knockout cells retained more triglycerides than control cells. This study demonstrates an adipocyte function-specific role of MTIF3, which originates in the maintenance of mitochondrial function, providing potential explanations for why MTIF3 genetic variation at rs67785913 is associated with body corpulence and response to weight loss interventions.


Subject(s)
Adipocytes , Obesity , Humans , Adipocytes/metabolism , Causality , Cell Line , CRISPR-Cas Systems , Obesity/genetics , Obesity/metabolism , Weight Loss
12.
Front Oncol ; 13: 1077640, 2023.
Article in English | MEDLINE | ID: mdl-36969058

ABSTRACT

Background: Glioblastoma multiforme (GBM) is the most lethal brain cancer in adults, characterized by rapid growth, extensive invasiveness, and poor prognosis, and there is still a lack of effective treatments. Here, we aimed to explore the role of triptolide (TPL), purified from Tripterygium wilfordii Hook F, on glioblastoma cell growth, apoptosis, proliferation, migration and invasion, as well as potential underlying mechanisms. Methods: The publicly available clinical data of Brain Lower Grade Glioma (LGG) from The Cancer Genome Atlas (TCGA) had been screened to observe PROX1 expression. The Kaplan-Meier analysis was used to analyze the relationship between PROX1 expression and GBM prognosis. CCK8, cell cycle, EDU, apoptosis, wound healing, and transwell assays were performed to detect the effects of TPL on glioblastoma U251 cell viability, cell cycle, proliferation, apoptosis, migration and invasion, respectively. Further, a soft agar colony assay was used to calculate the growth of glioblastoma cells. The qRT-PCR and western blot were conducted to quantify PROX1 mRNA and protein levels. The transcriptional regulation of TPL was detected by Dual luciferase reporter assay. Results: We found that TPL inhibited glioblastoma cell viability, proliferation, cell cycle, migration and invasion, but enhanced apoptosis in a dose-dependent manner. The expression of cell cycle inhibitor, P21, and pro-apoptosis factor, Bax was increased, while invasion-related factors MMP2 and MMP9 were silenced after TPL treatments. Mechanistically, TPL showed transcriptional inhibition of PROX1 appearance. Moreover, ectopic expression of PROX1 partially rescued the effects of TPL on glioblastoma cell viability, proliferation, apoptosis, migration and invasion, and on the expression of cell function-related genes. Conclusion: This study verified that TPL inhibited the progression of glioblastoma cells by transcriptionally depressing the expression of PROX1.

13.
Aging (Albany NY) ; 15(6): 2033-2045, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36920182

ABSTRACT

Osteoporosis (OP) is a metabolic bone disease that leads to decrease of bone strength and increase bone brittle and fracture. Dexamethasone (DXMS) usage is a common risk factor of OP. In present study, we found that the Epimedin C protect the DXMS-induced OP, Ras Homolog Family Member A transforming protein (RhoA) was increased in osteoblasts (OBs) and OP models. We further revealed that Nrf1 is a transcription factor that responds to Epimedin C and DXMS in modulating RhoA promoter. The results collectively demonstrate that Epimedin C functions as a positive modifier of RhoA via alteration of Nrf1 transcriptional activity on RhoA promoter, thereby, protecting OBs against OP. Our work is the first study identifying the Epimedin C function in balancing the OBs in OP model via Nrf1-RhoA.


Subject(s)
Osteoporosis , rhoA GTP-Binding Protein , Humans , Dexamethasone/pharmacology , Osteoblasts/metabolism , Osteoporosis/chemically induced , Osteoporosis/prevention & control , Osteoporosis/metabolism , rhoA GTP-Binding Protein/metabolism , Nuclear Respiratory Factor 1/metabolism
14.
Appl Environ Microbiol ; 89(3): e0183522, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36815770

ABSTRACT

In bacteria, manganese homeostasis is controlled by import, regulation, and efflux. Here, we identified 2 Mn exporters, MetA and MetB (manganese efflux transporters A and B), in Riemerella anatipestifer CH-1, encoding a putative cation diffusion facilitator (CDF) protein and putative resistance-nodulation-division (RND) efflux pump, respectively. Compared with the wild type (WT), ΔmetA, ΔmetB, and ΔmetAΔmetB exhibited sensitivity to manganese, since they accumulated more intracellular Mn2+ than the WT under excess manganese conditions, while the amount of iron in the mutants was decreased. Moreover, ΔmetA, ΔmetB, and ΔmetAΔmetB were more sensitive to the oxidant NaOCl than the WT. Further study showed that supplementation with iron sources could alleviate manganese toxicity and that excess manganese inhibited bacterial cell division. RNA-Seq showed that manganese stress resulted in the perturbation of iron metabolism genes, further demonstrating that manganese efflux is critical for iron homeostasis. metA transcription was upregulated under excess manganese but was not activated by MetR, a DtxR family protein, although MetR was also involved in manganese detoxification, while metB transcription was downregulated under iron depletion conditions and in fur mutants. Finally, homologues of MetA and MetB were found to be mainly distributed in members of Flavobacteriaceae. Specifically, MetB represents a novel manganese exporter in Gram-negative bacteria. IMPORTANCE Manganese is required for the function of many proteins in bacteria, but in excess, manganese can mediate toxicity. Therefore, the intracellular levels of manganese must be tightly controlled. Manganese efflux transporters have been characterized in some other bacteria; however, their homologues could not be found in the genome of Riemerella anatipestifer through sequence comparison. This indicated that other types of manganese efflux transporters likely exist. In this study, we characterized 2 transporters, MetA and MetB, that mediate manganese efflux in R. anatipestifer in response to manganese overload. MetA encodes a putative cation diffusion facilitator (CDF) protein, which has been characterized as a manganese transporter in other bacteria, while this is the first observation of a putative resistance-nodulation-division (RND) transporter contributing to manganese export in Gram-negative bacteria. In addition, the mechanism of manganese toxicity was studied by observing morphological changes and by transcriptome sequencing. Taken together, these results are important for expanding our understanding of manganese transporters and revealing the mechanism of manganese toxicity.


Subject(s)
Manganese , Riemerella , Manganese/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Iron/metabolism , Homeostasis , Riemerella/genetics , Riemerella/metabolism , Oxidative Stress , Bacterial Proteins/metabolism
15.
Poult Sci ; 102(3): 102450, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36621099

ABSTRACT

Riemerella anatipestifer (R. anatipestifer, RA) is an infectious pathogen that causes septicemia and polyserositis in ducks. Our previous studies showed that RA CH-1 ∆fur was significantly attenuated in ducklings, which highlights the potential of this strain as a live attenuated vaccine. In this study, it was shown that infection with 109 CFU of the fur mutant did not cause any clinical symptoms or significant histological lesions in 3-day-old ducklings and that the bacteria were readily cleared by the host within 3 d. Compared with the nonvaccinated group, the group inoculated with the mutant strain RA CH-1 ∆fur exhibited protection of ducklings against a high-dose (2.28 × 1010 CFU) challenge with the wild-type strain RA CH-1. Moreover, the average body weights and body weight gains of the Δfur-inoculated group were not significantly affected by the challenge. Further analysis revealed that RA CH-1 ∆fur elicited higher IgY titers and that the serum antibody levels persisted for at least 49 d after immunization. Overall, our study showed that RA CH-1 ∆fur is a safe and effective vaccine candidate that is expected to play an important role in RA CH-1 infection prevention in the duck industry.


Subject(s)
Flavobacteriaceae Infections , Poultry Diseases , Riemerella , Animals , Poultry Diseases/microbiology , Vaccines, Attenuated , Chickens , Riemerella/genetics , Ducks/microbiology , Flavobacteriaceae Infections/prevention & control , Flavobacteriaceae Infections/veterinary
16.
Diabetes ; 72(4): 455-466, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36662636

ABSTRACT

Reversible phosphorylation is an important regulatory mechanism. Regulation of protein phosphorylation in ß-cells has been extensively investigated, but less is known about protein dephosphorylation. To understand the role of protein dephosphorylation in ß-cells and type 2 diabetes (T2D), we first examined mRNA expression of the type 2C family (PP2C) of protein phosphatases in islets from T2D donors. Phosphatase expression overall was changed in T2D, and that of PPM1E was the most markedly downregulated. PPM1E expression correlated inversely with HbA1c. Silencing of PPM1E increased glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 cells and/or islets from patients with T2D, whereas PPM1E overexpression decreased GSIS. Increased GSIS after PPM1E silencing was associated with decreased oxidative stress, elevated cytosolic Ca2+ levels and ATP to ADP ratio, increased hyperpolarization of the inner mitochondrial membrane, and phosphorylation of CaMKII, AMPK, and acetyl-CoA carboxylase. Silencing of PPM1E, however, did not change insulin content. Increased GSIS, cell viability, and activation of AMPK upon metformin treatment in ß-cells were observed upon PPM1E silencing. Thus, protein dephosphorylation via PPM1E abrogates GSIS. Consequently, reduced PPM1E expression in T2D may be a compensatory response of ß-cells to uphold insulin secretion under metabolic duress. Targeting PPM1E in ß-cells may thus represent a novel therapeutic strategy for treatment of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Insulin Secretion , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , AMP-Activated Protein Kinases/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism
18.
Curr Eye Res ; 48(1): 25-33, 2023 01.
Article in English | MEDLINE | ID: mdl-36300537

ABSTRACT

PURPOSE: Ferroptosis is defined by the iron-dependent cell death caused by the accumulation of lipid peroxidation. As a major intracellular Fe pools, heme could be metabolized into ferrous iron, carbon monoxide, and biliverdin by Heme oxygenase-1 (HMOX1). Aged human lens epithelium was reported to highly susceptible to ferroptosis, the functional molecular involved in this progress is not explored. Here, we have demonstrated the function of HMOX1 in human lens epithelium during ferroptotic cell death. METHODS: HMOX1 stably expressed cell line was constructed by lentivirus transfection. HMOX1 knock-out cell line was constructed by Crispr-cas9 technology. Protein expression was detected by western blot. Inverted microscope was applied to record the morphological changes among different treatments. CCK8 assay and colony formation assay were applied to detect the cell proliferation rate. Cell death was detected by PI staining. Lipid Peroxidation was detected by Cell malondialdehyde (MDA) assay. Intracellular Ferrous and Ferric ions were determined using an iron assay kit. RESULTS: HMOX1 expression was induced significantly in HLECs under erastin treatment in a time-dependent and dosage-dependent manner. Forced expression of HMOX1 increase the sensitivity of HLECs to erastin treatment. However, knock-out or knock-down of HMOX1 improved the cell viability of HLECs significantly under erastin treatment. Iron liberated from heme by HMOX1 might play pivotal role to improve the sensitivity of HLECs in response to erastin. CONCLUSION: HMOX1 is an essential pro-ferroptosis enzyme which increase the susceptibility of human lens epithelium to erastin. Ferrous iron, a byproduct of heme, might accelerate erastin triggered ferrotosis cell death in human lens epithelium cells.


Subject(s)
Ferroptosis , Humans , Aged , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Iron/metabolism , Heme/metabolism , Epithelial Cells/metabolism
19.
Cells ; 11(16)2022 08 17.
Article in English | MEDLINE | ID: mdl-36010635

ABSTRACT

The integrity of lens epithelial cells (LECs) lays the foundation for lens function and transparency. By contrast, epithelial-mesenchymal transition (EMT) of LECs leads to lens fibrosis, such as anterior subcapsular cataracts (ASC) and fibrotic forms of posterior capsule opacification (PCO). However, the underlying mechanisms remain unclear. Here, we aimed to explore the role of long non-coding RNA (lncRNA) H19 in regulating TGF-ß2-induced EMT during lens fibrosis, revealing a novel lncRNA-based regulatory mechanism. In this work, we identified that lncRNA H19 was highly expressed in LECs, but downregulated by exposure to TGF-ß2. In both human lens epithelial explants and SRA01/04 cells, knockdown of H19 aggravated TGF-ß2-induced EMT, while overexpressing H19 partially reversed EMT and restored lens epithelial phenotypes. Semi-in vivo whole lens culture and H19 knockout mice demonstrated the indispensable role of H19 in sustaining lens clarity through maintaining LEC features. Bioinformatic analyses further implied a potential H19-centered regulatory mechanism via Smad-dependent pathways, confirmed by in vitro experiments. In conclusion, we uncovered a novel role of H19 in inhibiting TGF-ß2-induced EMT of the lens by suppressing Smad-dependent signaling, providing potential therapeutic targets for treating lens fibrosis.


Subject(s)
Capsule Opacification , RNA, Long Noncoding , Animals , Capsule Opacification/genetics , Capsule Opacification/metabolism , Epithelial Cells/metabolism , Fibrosis , Humans , Mice , Phenotype , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transforming Growth Factor beta2/metabolism
20.
Invest Ophthalmol Vis Sci ; 63(6): 26, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35758908

ABSTRACT

Purpose: Diabetic cataract (DC) is a visual disorder arising from diabetes mellitus (DM). Autophagy, a prosurvival intracellular process through lysosomal fusion and degradation, has been implicated in multiple diabetic complications. Herein, we performed in vivo and in vitro assays to explore the specific roles of the autophagy-lysosome pathway in DC. Methods: Streptozotocin-induced DM and incubation in high glucose (HG) led to rat lens opacification. Protein Simple Wes, Western blot, and immunoassay were utilized to investigate autophagic changes in lens epithelial cells (LECs) and lens fiber cells (LFCs). RNA-sequencing (RNA-seq) was performed to explore genetic changes in the lenses of diabetic rats. Moreover, autophagy-lysosomal functions were examined using lysotracker, Western blot, and immunofluorescence analyses in HG-cultured primary rabbit LECs. Results: First, DM and HG culture led to fibrotic LECs, swelling LFCs, and eventually cataracts. Further analysis showed aberrant autophagic degradation in LECs and LFCs during cataract formation. RNA-seq data revealed that the differentially expressed genes (DEGs) were enriched in the lysosome pathway. In primary LECs, HG treatment resulted in decreased transcription factor EB (TFEB) and cathepsin B (CTSB) activity, and increased lysosomal size and pH values. Moreover, TFEB-mediated dysfunctional lysosomes resulted from excessive oxidative stress in LECs under HG conditions. Furthermore, TFEB activation by curcumin analog C1 alleviated HG-induced cataracts through enhancing lysosome biogenesis and activating protective autophagy, thereby attenuating HG-mediated oxidative damage. Conclusions: In summary, we first identified that ROS-TFEB-dependent lysosomal dysfunction contributed to autophagy blockage in HG-induced cataracts. Additionally, TFEB-mediated lysosomal restoration might be a promising therapeutic method for preventing and treating DC through mitigating oxidative stress.


Subject(s)
Cataract , Diabetes Mellitus, Experimental , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cataract/metabolism , Cataract/prevention & control , Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , Glucose/pharmacology , Lysosomes/metabolism , Oxidative Stress , Rabbits , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...