Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 34(4): 1306-13, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24453321

ABSTRACT

Establishing neural determinants of psychophysical performance requires both behavioral and neurophysiological metrics amenable to correlative analyses. It is often assumed that organisms use neural information optimally, such that any information available in a neural code that could improve behavioral performance is used. Studies have shown that detection of amplitude-modulated (AM) auditory tones by humans is correlated to neural synchrony thresholds, as recorded in rabbit at the level of the inferior colliculus, the first level of the ascending auditory pathway where neurons are tuned to AM stimuli. Behavioral thresholds in rabbit, however, are ∼10 dB higher (i.e., 3 times less sensitive) than in humans, and are better correlated to rate-based than temporal coding schemes in the auditory midbrain. The behavioral and physiological results shown here illustrate an unexpected, suboptimal utilization of available neural information that could provide new insights into the mechanisms that link neuronal function to behavior.


Subject(s)
Auditory Perception/physiology , Auditory Threshold/physiology , Behavior, Animal/physiology , Neurons/physiology , Acoustic Stimulation , Adult , Animals , Female , Humans , Middle Aged , Rabbits , Young Adult
2.
J Neurosci Methods ; 206(2): 120-31, 2012.
Article in English | MEDLINE | ID: mdl-22387262

ABSTRACT

Sorting action potentials (spikes) from tetrode recordings can be time consuming, labor intensive, and inconsistent, depending on the methods used and the experience of the operator. The techniques presented here were designed to address these issues. A feature related to the slope of the spike during repolarization is computed. A small subsample of the features obtained from the tetrode (ca. 10,000-20,000 events) is clustered using a modified version of k-means that uses Mahalanobis distance and a scaling factor related to the cluster size. The cluster-size-based scaling improves the clustering by increasing the separability of close clusters, especially when they are of disparate size. The full data set is then classified from the statistics of the clusters. The technique yields consistent results for a chosen number of clusters. A MATLAB implementation is able to classify more than 5000 spikes per second on a modern workstation.


Subject(s)
Action Potentials/physiology , Neurons/physiology , Signal Processing, Computer-Assisted , Algorithms , Animals , Cluster Analysis , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...