Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 8: 766992, 2021.
Article in English | MEDLINE | ID: mdl-34869535

ABSTRACT

Background: Phthalates esters are widely used commercially and can leach from a food container or food packaging. Few studies have been conducted in Asia regarding food processed to varying levels and human phthalate exposure. This study aimed to evaluate the association between unprocessed and ultra-processed food intake and urinary phthalate metabolite levels in the Taiwanese adult population. Methods: A total of 516 participant data were extracted from the cross-sectional 1993-1996 and 2005-2008 Nutrition and Health Survey in Taiwan of those aged over 18 years, where urinary measures and one 24-h dietary recall were collected. Urinary concentrations of dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, and di-(2-ethylhexyl) phthalate metabolites including monomethyl phthalate, monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate, mono-(2-ethylhexyl) phthalate, mono-(2-ethyl-5-hydroxyhexyl) phthalate, and mono-(2-ethyl-5-oxohexyl) phthalate were measured in spot urine samples. The NOVA food processing classification system was applied to divide all consumed foods into four mutually exclusive groups including unprocessed or minimally processed, processed culinary ingredients, processed and ultra-processed food. Generalized linear models were employed to examine the associations between the percentage quartiles (Qs) of unprocessed and ultra-processed foods in the total weight of food and the urinary phthalate metabolites. Results: Compared with participants in the lowest quartiles (Q1) of ultra-processed food intake, highest ultra-processed food intake (Q4) had 65.7% (95% confidence interval [CI]: 4.83, 162) higher urinary concentrations of MEP after adjusted for covariates. In contrast, the higher unprocessed food consumption was inversely associated with urinary concentrations of MEP and MBP (P for trend = 0.03). When compared to the lowest unprocessed food consumers (Q1), higher consumers (Q4) presented 38.6% (95% CI: -61.3, -2.59) lower MEP concentrations and 23.1% (95% CI: -38.5, -3.71) lower MBP concentrations. Conclusion: Ultra-processed food consumption was associated with increased concentrations of urinary MEP. Conversely, consuming unprocessed food was associated with lower concentrations of MEP and MBP in the Asian Taiwanese adult population.

2.
Toxicol Appl Pharmacol ; 292: 94-102, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26768552

ABSTRACT

Genistein has been shown to enhance the antitumor activity of trichostatin A (TSA) in human lung carcinoma A549 cells. However, whether the combined treatment exerts the same effect in other lung cancer cells is unclear. In the present study we first compared the enhancing effect of genistein on the antitumor effect of TSA in ABC-1, NCI-H460 (H460) and A549 cells. Second, we investigated whether the effects of genistein are associated with increased histone/non-histone protein acetylation. We found that the enhancing effect of genistein on cell-growth-arrest in ABC-1 cells (p53 mutant) was less than in A549 and H460 cells. Genistein enhanced TSA induced apoptosis in A549 and H460 cells rather than in ABC-1 cells. After silencing p53 expression in A549 and H460 cells, the enhancing effect of genistein was diminished. In addition, genistein increased TSA-induced histone H3/H4 acetylation in A549 and H460 cells. Genistein also increased p53 acetylation in H460 cells. The inhibitor of acetyltransferase, anacardic acid, diminished the enhancing effect of genistein on all TSA-induced histone/p53 acetylation and apoptosis. Genistein in combination with TSA increased the expression of p300 protein, an acetyltransferase, in A549 and NCI-H460 cells. Furthermore, we demonstrated that genistein also enhanced the antitumor effect of genistein in A549-tumor-bearing mice. Taken together, these results suggest that the enhancing effects of genistein on TSA-induced apoptosis in lung cancer cells were p53-dependent and were associated with histone/non-histone protein acetylation.


Subject(s)
Apoptosis/drug effects , Genes, p53/drug effects , Genistein/administration & dosage , Histone Acetyltransferases/biosynthesis , Hydroxamic Acids/administration & dosage , Lung Neoplasms/enzymology , Animals , Apoptosis/physiology , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Synergism , Genes, p53/physiology , Humans , Lung Neoplasms/drug therapy , Mice , Mice, Nude , Up-Regulation/drug effects , Up-Regulation/physiology , Xenograft Model Antitumor Assays/methods
4.
Toxicol Appl Pharmacol ; 262(3): 247-54, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22626855

ABSTRACT

Our previous study has shown that genistein enhances apoptosis in A549 lung cancer cells induced by trichostatin A (TSA). The precise molecular mechanism underlying the effect of genistein, however, remains unclear. In the present study, we investigated whether genistein enhances the anti-cancer effect of TSA through up-regulation of TNF receptor-1 (TNFR-1) death receptor signaling. We incubated A549 cells with TSA (50 ng/mL) alone or in combination with genistein and then determined the mRNA and protein expression of TNFR-1 as well as the activation of downstream caspases. Genistein at 5 and 10 µM significantly enhanced the TSA-induced decrease in cell number and apoptosis in a dose-dependent manner. The combined treatment significantly increased mRNA and protein expression of TNFR-1 at 6 and 12h, respectively, compared with that of the control group; while TSA alone had no effect. TSA in combination with 10 µM of genistein increased TNFR-1 mRNA and protein expression by about 70% and 40%, respectively. The underlying mechanism for this effect of genistein may be partly associated with the estrogen receptor pathway. The combined treatment also increased the activation of caspase-3 and -10 as well as p53 protein expression in A549 cells. The enhancing effects of genistein on the TSA-induced decrease in cell number and on the expression of caspase-3 in A549 cells were suppressed by silencing TNFR-1 expression. These data demonstrated that the upregulation of TNFR-1 death receptor signaling plays an important role, at least in part, in the enhancing effect of genistein on TSA-induced apoptosis in A549 cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Genistein/pharmacology , Hydroxamic Acids/pharmacology , Lung Neoplasms/drug therapy , Receptors, Tumor Necrosis Factor, Type I/agonists , Apoptosis/drug effects , Blotting, Western , Carcinoma, Non-Small-Cell Lung/metabolism , Caspases/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Synergism , Humans , Lung Neoplasms/metabolism , RNA, Small Interfering/metabolism , Receptors, Tumor Necrosis Factor, Type I/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation/drug effects
5.
J Proteome Res ; 9(6): 3091-102, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20707402

ABSTRACT

The inhibition of dihydrofolate reductase (DHFR) by antifolates is a common practice both in cell culture and in chemotherapy. Surprisingly, antifolate resistance was also observed in cultured murine myeloma cells (SP2/0) in the presence of human plasma (HP); thus, we used a proteomic approach to identify novel plasma biomarker(s) for this condition. In contrast to the in vitro antifolate response, metabolic enzymes and translation machinery proteins were found to be up-regulated in the presence of HP. The antifolate resistance inherent in HP may be explained by a simultaneous promotion of cell proliferation and the maintenance of DNA integrity. Furthermore, the factor(s) was found to be extrinsic, heat stable and very small in size. Adenine, a supplemented additive in erythrocyte preservation, was subsequently identified as the contributing factor and exogenous addition in cultures reversed the cytotoxicity induced by antifolates. Importantly, adenine-containing blood components, which may provide enhanced survival to otherwise sensitive antifolate-targeted cells, showed a dose-dependent adverse effect in transfusion recipients receiving antifolate (methotrexate) medications. These findings not only highlight a previously unnoticed role of adenine, but also emphasize a novel mechanistic link between transfusion and subsequently reduced survival in patients taking methotrexate.


Subject(s)
Blood Proteins/pharmacology , Drug Resistance/drug effects , Folic Acid Antagonists/pharmacology , Proteomics/methods , Systems Biology/methods , Adenine/pharmacology , Aminopterin , Animals , Blood Preservation , Blood Proteins/metabolism , Blood Transfusion , Cell Line, Tumor , Cell Proliferation/drug effects , Cluster Analysis , Dose-Response Relationship, Drug , Drug Stability , Electrophoresis, Gel, Two-Dimensional , Humans , Kaplan-Meier Estimate , Methotrexate , Mice , Preservatives, Pharmaceutical , Retrospective Studies , Up-Regulation
6.
J Immunol Methods ; 361(1-2): 89-97, 2010 Sep 30.
Article in English | MEDLINE | ID: mdl-20723546

ABSTRACT

Prion diseases such as Bovine Spongiform Encephalopathy (BSE) and new variant Creutzfeldt-Jakob disease (nvCJD) have caused a major safety concern in cell cultures using fetal calf serum (FCS). In this study, we found that screened and tested human plasma (HP) obtained from blood centers may be an ideal alternate nutrient substitute to FCS for culturing hybridoma. In addition to the inherent safety, a ten-fold increase in the fusion efficiency has been observed if the HP was used as the nutrient supplement instead of FCS. Subsequently, a broader antibody repertoire may be recovered. The HP supplement was found to promote the growth of hybridoma cells but no impact on antibody secretion. Interestingly, this effect of enrichment was only observed for HP, but not plasma from other animals. Unidentified murine hybridoma cloning factors other than IL-6 may specifically reside in human blood.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Cell Culture Techniques/methods , Cell Fusion/methods , Hybridomas/immunology , Plasma/metabolism , Animals , Cell Proliferation , Humans , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...