Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014010

ABSTRACT

We have dissected the role of Estrogen receptor beta (ERß) in prostate cancer (PCa) with a novel ERß ligand, OSU-ERb-12. Drug screens revealed additive interactions between OSU-ERB-12 and either epigenetic inhibitors or the androgen receptor antagonist, Enzalutamide (Enza). Clonogenic and cell biolody studies supported the potent additive effects of OSU-ERB-12 (100nM) and Enza (1µM). The cooperative behavior was in PCa cell lines treated with either OSU-ERB-12 plus Enza or combinations involving 17ß-estradiol (E2). OSU-ERb-12 plus Enza uniquely impacted the transcriptiome, accessible chromatin, and the AR, MYC and H3K27ac cistromes. This included skewed transcriptional responses including suppression of the androgen and MYC transcriptomes, and repressed MYC protein. OSU-ERb-12 plus Enza uniquely impacted chromatin accessibility at approximately 3000 nucleosome-free sites, enriched at enhancers, enriched for basic Helix-Loop-Helix motifs. CUT&RUN experiments revealed combination treatment targeting of MYC, AR, and H3K27ac again shaping enhancer accessibility. Specifically, it repressed MYC interactions at enhancer regions enriched for bHLH motifs, and overlapped with publicly-available bHLH cistromes. Finally, cistrome-transcriptome analyses identified ~200 genes that distinguished advanced PCa tumors in the SU2C cohort with high androgen and low neuroendocrine scores.

2.
J Patient Exp ; 8: 23743735211062392, 2021.
Article in English | MEDLINE | ID: mdl-34869849

ABSTRACT

The coronavirus (COVID-19) pandemic impacted healthcare systems worldwide. In this study, we conducted qualitative interviews with pregnant women in Ghana and the United States (US) to understand their antenatal care (ANC) experience. Adapting to the virtual nature of the pandemic, social media platforms Facebook and WhatsApp were used to recruit, consent, enroll, and interview women. Interviewers used a semi-structured guide with content validated by the US and Ghanaian collaborators. Audio recordings of the interviews were transcribed, coded using Dedoose (v8.0.35, Dedoose) and grounded theory, and analyzed for recurring themes. Between May and July 2020, 32 women (15 Ghanaians, 17 Americans), aged 25-40 years were interviewed. Major themes emerged: (i) apprehension about ANC services; (ii) disruptions to planned healthcare provider use; and (iii) changes in social support. Although the women strove to retain their ANC as planned, the pandemic universally caused several unanticipated changes. Given associations between higher maternal mortality and poor outcomes with inadequate ANC, specific policies and resources for telehealth education and intra- and postpartum support should be implemented to reduce disruptions to ANC imposed by COVID-19.

3.
FASEB J ; 34(9): 11395-11404, 2020 09.
Article in English | MEDLINE | ID: mdl-32677118

ABSTRACT

Cereblon (CRBN) is a substrate recruiter element of the E3 cullin 4-RING ubiquitin ligase complex, and a binding target of immunomodulatory agents (IMiDs). CRBN is responsible for the pleiotropic effects of IMiDs, yet its function in angiogenesis and in mediating the antiangiogenic effects of IMiDs remains unclear. We investigated the role of CRBN in the angiogenic process and in propagating the antiangiogenic effects of IMiDs in vitro. siRNA-mediated CRBN knock down in human endothelial cells (HUVEC and HMVEC-L), did not affect endothelial cell proliferation, migration, or tube formation. Using CRBN-deficient mice, we further demonstrated that microvessal formation can occur independently of cereblon in the ex vivo mouse aortic ring model. The cereblon E3 ubiquitin ligase complex can recruit endothelial cell-specific factors, AGO2 (associated with angiogenesis), and SALL4 (associated with embryogenesis/angiogenesis), for ubiquitin-mediated degradation. Knockdown of CRBN caused a corresponding increase in AGO2 and SALL4 protein expression and IMiD treatment was able to rescue the siCRBN effect to increase the CRBN expression. These findings suggest one potential mechanism of action that likely involves a tightly coordinated regulation of CRBN with endothelial cell targets and highlight the need to further elucidate the mechanism(s), which could include cereblon-independent pathways, through which IMiDs exert their antiangiogenic effects.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Angiogenesis Inhibitors/pharmacology , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Human Umbilical Vein Endothelial Cells/cytology , Humans , Lenalidomide/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/genetics , RNA Interference , Ubiquitin-Protein Ligases/genetics
4.
Cancer Biol Ther ; 21(3): 223-230, 2020.
Article in English | MEDLINE | ID: mdl-31709896

ABSTRACT

Introduction: Transporters comprising the blood-brain barrier complicate delivery of many therapeutics to the central nervous system. The present study ascertained whether the natural product botryllamide G is viable for in vivo inhibition of ABCG2 using lapatinib as a probe for ABCB1 and ABCG2-mediated efflux from the brain. Methods: Wild-type and Mdr1a/Mdr1b (-/-) mice were treated with botryllamide G and lapatinib ("doublet therapy"), and while a separate cohort of wild-type mice was treated with botryllamide, tariquidar and lapatinib ("triplet therapy"). Results: Botryllamide G demonstrates biphasic elimination with a rapid distribution, decreasing below the in vitro IC50 of 6.9 µM within minutes, yet with a relatively slower terminal half-life (4.6 h). In Mdr1a/Mdr1b (-/-) mice, doublet therapy resulted in a significant increase in brain lapatinib AUC at 8 h (2058 h*ng/mL vs 4007 h*ng/mL; P = .031), but not plasma exposure (P = .15). No significant differences were observed after 24 h. Lapatinib brain exposure was greater through 1 h when wild-type mice were administered triplet therapy (298 h*pg/mg vs 120 h*pg/mg; P < .001), but the triplet decreased brain AUC through 24 h vs. mice administered lapatinib alone (2878 h*pg/mg vs 4461hr*ng/mL; P < .001) and did not alter the brain:plasma ratio. Conclusions: In summary, the ABCG2 inhibitor, botryllamide G, increases brain exposure to lapatinib in mice lacking Abcb1, although the combination of botryllamide G and tariquidar increases brain exposure in wild-type mice only briefly (1 h). Additional research is needed to find analogs of this compound that have better pharmacokinetics and pharmacodynamic effects on ABCG2 inhibition.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/physiology , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Acrylamides/pharmacology , Blood-Brain Barrier/metabolism , Brain/metabolism , Lapatinib/pharmacokinetics , Phenols/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Blood-Brain Barrier/drug effects , Brain/drug effects , Lapatinib/administration & dosage , Lapatinib/metabolism , Male , Mice , Mice, Knockout , Tissue Distribution , ATP-Binding Cassette Sub-Family B Member 4
5.
Sci Rep ; 9(1): 14884, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619706

ABSTRACT

Carfilzomib-lenalidomide-dexamethasone (KRd) therapy has yielded promising results in patients with newly diagnosed multiple myeloma (NDMM). Cereblon (CRBN) is the direct molecular target of lenalidomide and genetic polymorphisms in CRBN have been associated with lenalidomide efficacy. In this study, we assessed the correlation of five single nucleotide variants (SNVs) in the CRBN gene with clinical response and outcomes in patients with NDMM administered KRd therapy with lenalidomide maintenance, achieving favorable trial endpoints in a prospective Phase II study (NCT01402284). Of the observed SNVs, no associations with KRd therapy response were found in this patient cohort, although strong trends in hypoalbuminemia grade and hyperbilirubinemia grade emerged across the CRBN rs1672753 genotype (P = 0.0008) and the rs1714327 genotype (P = 0.0010), respectively. Our results do not provide conclusive support for the predictive utility of CRBN gene polymorphisms as potential biomarkers of clinical response to lenalidomide-based therapy in our patient population. However, these findings remain to be validated in prospective studies using larger patient populations.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Hyperbilirubinemia/diagnosis , Hypoalbuminemia/diagnosis , Lenalidomide/administration & dosage , Multiple Myeloma/drug therapy , Polymorphism, Single Nucleotide , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Dexamethasone/administration & dosage , Dexamethasone/adverse effects , Drug Administration Schedule , Female , Gene Expression , Genotype , Humans , Hyperbilirubinemia/chemically induced , Hyperbilirubinemia/physiopathology , Hypoalbuminemia/chemically induced , Hypoalbuminemia/physiopathology , Lenalidomide/adverse effects , Male , Middle Aged , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Oligopeptides/administration & dosage , Oligopeptides/adverse effects , Prospective Studies , Treatment Outcome , Ubiquitin-Protein Ligases
7.
Mol Pharmacol ; 96(2): 158-167, 2019 08.
Article in English | MEDLINE | ID: mdl-31175181

ABSTRACT

Mithramycin demonstrates preclinical anticancer activity, but its therapeutic dose is limited by the development of hepatotoxicity that remains poorly characterized. A pharmacogenomics characterization of mithramycin-induced transaminitis revealed that hepatotoxicity is associated with germline variants in genes involved in bile disposition: ABCB4 (multidrug resistance 3) rs2302387 and ABCB11 [bile salt export pump (BSEP)] rs4668115 reduce transporter expression (P < 0.05) and were associated with ≥grade 3 transaminitis developing 24 hours after the third infusion of mithramycin (25 mcg/kg, 6 hours/infusion, every day ×7, every 28 days; P < 0.0040). A similar relationship was observed in a pediatric cohort. We therefore undertook to characterize the mechanism of mithramycin-induced acute transaminitis. As mithramycin affects cellular response to bile acid treatment by altering the expression of multiple bile transporters (e.g., ABCB4, ABCB11, sodium/taurocholate cotransporting polypeptide, organic solute transporter α/ß) in several cell lines [Huh7, HepaRG, HepaRG BSEP (-/-)] and primary human hepatocytes, we hypothesized that mithramycin inhibited bile-mediated activation of the farnesoid X receptor (FXR). FXR was downregulated in all hepatocyte cell lines and primary human hepatocytes (P < 0.0001), and mithramycin inhibited chenodeoxycholic acid- and GW4046-induced FXR-galactose-induced gene 4 luciferase reporter activity (P < 0.001). Mithramycin promoted glycochenodeoxycholic acid-induced cytotoxicity in ABCB11 (-/-) cells and increased the overall intracellular concentration of bile acids in primary human hepatocytes grown in sandwich culture (P < 0.01). Mithramycin is a FXR expression and FXR transactivation inhibitor that inhibits bile flow and potentiates bile-induced cellular toxicity, particularly in cells with low ABCB11 function. These results suggest that mithramycin causes hepatotoxicity through derangement of bile acid disposition; results also suggest that pharmacogenomic markers may be useful to identify patients who may tolerate higher mithramycin doses. SIGNIFICANCE STATEMENT: The present study characterizes a novel mechanism of drug-induced hepatotoxicity in which mithramycin not only alters farnesoid X receptor (FXR) and small heterodimer partner gene expression but also inhibits bile acid binding to FXR, resulting in deregulation of cellular bile homeostasis. Two novel single-nucleotide polymorphisms in bile flow transporters are associated with mithramycin-induced liver function test elevations, and the present results are the rationale for a genotype-directed clinical trial using mithramycin in patients with thoracic malignancies.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Chemical and Drug Induced Liver Injury/metabolism , Membrane Transport Proteins/genetics , Plicamycin/adverse effects , Thoracic Neoplasms/drug therapy , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Adult , Aged , Cell Line, Tumor , Chemical and Drug Induced Liver Injury/genetics , Clinical Trials, Phase II as Topic , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Membrane Transport Proteins/metabolism , Middle Aged , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Thoracic Neoplasms/genetics , Thoracic Neoplasms/metabolism
8.
Mar Drugs ; 16(7)2018 Jul 19.
Article in English | MEDLINE | ID: mdl-30029505

ABSTRACT

Elements of the hypoxia inducible factor (HIF) transcriptional system, a key regulator of the cellular hypoxic response, are up-regulated in a range of cancer cells. HIF is fundamentally involved in tumor angiogenesis, invasion, and energy metabolism. Inhibition of the transcriptional activity of HIF may be of therapeutic benefit to cancer patients. We recently described the identification of two marine pyrroloiminoquinone alkaloids with potent activity in inhibiting the interaction between the oncogenic transcription factor HIF-1α and the coactivator protein p300. Herein, we present further characterization data for these two screening hits: discorhabdin H (1) and discorhabdin L (2), with a specific focus on their anti-angiogenic and anti-tumor effects. We demonstrated that only discorhabdin L (2) possesses excellent anti-angiogenic activity in inhibiting endothelial cell proliferation and tube formation, as well as decreasing microvessel outgrowth in the ex vivo rat aortic ring assay. We further showed that discorhabdin L (2) significantly inhibits in vivo prostate tumor growth in a LNCaP xenograft model. In conclusion, our findings suggest that discorhabdin L (2) represents a promising HIF-1α inhibitor worthy of further drug development.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/pharmacology , Neovascularization, Pathologic/drug therapy , Quinones/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , E1A-Associated p300 Protein/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice , Mice, SCID , Neovascularization, Pathologic/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Rats , Signal Transduction/drug effects
9.
Cancer Biol Ther ; 19(10): 869-870, 2018.
Article in English | MEDLINE | ID: mdl-29757697

ABSTRACT

Numerous growth-inducing signaling pathways have been implicated in the development of metastatic castrate-resistant prostate cancer, but their cross-talk with androgen receptor functions remains poorly understood. A recent study published in Science Signaling by Chen et al. 1 has identified a novel androgen-mediated signaling axis driven by loss of SPDEF and gain of TGFBI to facilitate metastasis, which may explain the acquisition of resistance to androgen deprivation therapy. These findings suggest that therapeutic inhibition of androgen signaling may inadvertently promote castrate resistance by inhibiting tumor suppressive functions of the androgen receptor.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Androgen Antagonists , Androgens , Drug Resistance, Neoplasm , Humans , Male , Proto-Oncogene Proteins c-ets , Receptors, Androgen
10.
Mol Cancer Res ; 15(8): 1096-1105, 2017 08.
Article in English | MEDLINE | ID: mdl-28389619

ABSTRACT

Castration-resistant prostate cancer (CRPC) has greater intratumoral testosterone concentrations than similar tumors from eugonadal men; simple diffusion does not account for this observation. This study was undertaken to ascertain the androgen uptake kinetics, functional, and clinical relevance of de novo expression of the steroid hormone transporter OATP1B3 (SLCO1B3). Experiments testing the cellular uptake of androgens suggest that testosterone is an excellent substrate of OATP1B3 (Km = 23.2 µmol/L; Vmax = 321.6 pmol/mg/minute), and cells expressing a doxycycline-inducible SLCO1B3 construct had greater uptake of a clinically relevant concentration of 3H-testosterone (50 nmol/L; 1.6-fold, P = 0.0027). When compared with Slco1b2 (-/-) mice, Slco1b2 (-/-)/hSLCO1B3 knockins had greater hepatic uptake (15% greater AUC, P = 0.0040) and lower plasma exposure to 3H-testosterone (17% lower AUC, P = 0.0030). Of 82 transporters genes, SLCO1B3 is the second-most differentially expressed transporter in CRPC cell lines (116-fold vs. androgen-sensitive cells), with a differentially spliced cancer-type ct-SLCO1B3 making up the majority of SLCO1B3 expression. Overexpression of SLCO1B3 in androgen-responsive cells results in 1.5- to 2-fold greater testosterone uptake, whereas siRNA knockdown of SLCO1B3 in CRPC cells did not change intracellular testosterone concentration. Primary human prostate tumors express SLCO1B3 to a greater extent than ct-SLCO1B3 (26% of total SLCO1B3 expression vs. 0.08%), suggesting that androgen uptake in these tumor cells also is greater. Non-liver tumors do not differentially express SLCO1B3.Implications: This study suggests that de novo OATP1B3 expression in prostate cancer drives greater androgen uptake and is consistent with previous observations that greater OATP1B3 activity results in the development of androgen deprivation therapy resistance and shorter overall survival. Mol Cancer Res; 15(8); 1096-105. ©2017 AACR.


Subject(s)
Androgens/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Testosterone/metabolism , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice, Knockout , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , RNA, Small Interfering/genetics , Testosterone/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...