Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 32(12): e362-e373, 2016 12.
Article in English | MEDLINE | ID: mdl-27671469

ABSTRACT

OBJECTIVES: To investigate the effects of light curing protocols on the shrinkage behaviors, contraction stress, and microleakage in composite restorations by an experimental-numerical hybrid analysis. METHODS: Three groups of human molars were collected to receive different light-curing protocols: vertical or oblique curing at regular intensity, and vertical curing at reduced intensity. For each tooth, the composite fillings were consecutively placed under unbonded and bonded states, and their shrinkage behaviors were examined with a digital image correlation (DIC) technique. The strains of the unbonded restorations were input into two finite element analysis (FEA) models with settings of the composite as either homogeneous or hardened along polymerization gradients. The preliminary solutions were verified by their individual deformations in the bonded restorations. The interfacial microleakage of restorations was also determined by micro-CT scanning and compared with the FEA results. RESULTS: The bonded restorations showed centripetal shrinkage patterns with greater downward displacements than their unbonded restorations. Vertical curing at regular intensity caused the greatest shrinkage strain, contraction stress, and microleakage among the three protocols. Low-intensity curing reduced overall shrinkage strain and displacements at cervical margin, but did not prevent the formation of microleakage. Oblique curing caused asymmetric shrinkage with the tooth-shielded side revealing less deformation. Setting the polymerization-dependent elastic moduli of the composite enhanced the reliability of FEA. SIGNIFICANCE: This hybrid analysis comprehensively examined the polymerization shrinkage behaviors. Both the light intensity and direction affect the shrinkages and contraction stress. Oblique curing decreases shrinkage due to the attenuated irradiation by tooth-shielding rather than modulations of shrinkage direction.


Subject(s)
Composite Resins , Curing Lights, Dental , Dental Restoration, Permanent , Dental Marginal Adaptation , Materials Testing , Molar , Polymerization , Reproducibility of Results
2.
Plant Cell Physiol ; 48(8): 1098-107, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17597080

ABSTRACT

Plant HSP101 has dual activities, first, in conferring thermotolerance, and secondly, in serving as a translational activator. In this study, we introduced Oryza sativa Hsp101 (osHsp101) cDNA into tobacco by Agrobacterium-mediated transformation. Stable integration and expression of the transgene into the tobacco genome was demonstrated by Southern and Western blot analysis. Overexpression of osHSP101 had no noticeable effect on growth or development of the transgenic plants. Homozygous T(2) transgenic plants with overexpressed osHSP101 survived heat treatment better than untransformed control plants. In addition, taking advantage of conferring basal thermotolerance by plant HSP101, we were able to demonstrate the feasibility of using osHsp101 as a selection marker and select the transformants under high temperature in tobacco leaf disc transformation mediated by Agrobacterium. Furthermore, transgenic tobacco plants with overexpressed osHSP101 were able to enhance luciferase expression up to 2.9-fold more than untransformed plants in the progeny of reciprocally crossed with omega-luciferase reporter lines.


Subject(s)
Oryza/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Blotting, Southern , Blotting, Western , Gene Expression Regulation, Plant , Genetic Vectors/genetics , Hot Temperature , Luciferases/genetics , Luciferases/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Temperature , Nicotiana/genetics , Nicotiana/metabolism , Transcription Factors/metabolism , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...