Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10025, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37340014

ABSTRACT

We investigated the effectiveness of using methylboronic acid MIDA ester (ADM) as an additive in an electrolyte to enhance the overall electrochemical and material properties of an LNCAO (LiNi0.8Co0.15Al0.05O2) cathode. The cyclic stability of the cathode material measured at 40 °C (@ 0.2 C) showed an enhanced capacity of 144.28 mAh g-1 (@ 100 cycles), a capacity retention of 80%, and a high coulombic efficiency (99.5%), in contrast to these same properties without the electrolyte additive (37.5 mAh g-1, ~ 20%, and 90.4%), thus confirming the effectiveness of the additive. A Fourier transform infrared spectroscopy (FTIR) analysis distinctly showed that the ADM additive suppressed the EC-Li+ ion coordination (1197 cm-1 and 728 cm-1) in the electrolyte, thereby improving the cyclic performance of the LNCAO cathode. The cathode after 100 charge/discharge cycles revealed that the ADM-containing system exhibited better surface stability of the grains in the LNCAO cathode, whereas distinct cracks were observed in the system without the ADM in the electrolyte. A transmission electron microscopy (TEM) analysis revealed the presence of a thin, uniform and dense cathode electrolyte interface (CEI) film on the surface of LNCAO cathode. An operando synchrotron X-ray diffraction (XRD) test identified the high structural reversibility of the LNCAO cathode with a CEI layer formed by the ADM, which effectively maintained the structural stability of the layered material. The additive effectively inhibited the decomposition of electrolyte compositions, as confirmed by X-ray photoelectron spectroscopy (XPS).

2.
Nanomaterials (Basel) ; 12(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35055204

ABSTRACT

Three new amino-s-triazine-based dendrons, 1a, 1b, and 1c, containing an aryl-CN moiety in the dendritic skeleton were prepared in 72-81% yields (1a: R1 = - N(n-C8H17)2, R2 = n-OC8H17, 1b: R1 = R2 = - N(n-C8H17)2, 1c: R1 = - N(n-C8H17)2, R2 = - N(n-C4H9)2). Dendrons 1a with N(n-C8H17)2 and n-OC8H17 peripheral substituents, surprisingly, did not show any mesogenic phase during the thermal process. However, non-mesogenic 1a can be converted to mesogenic 1b or 1c by eliminating the peripheral dipole arising from the alkoxy substituent; dendron 1b only comprising the same N(n-C8H17)2 peripheral groups showed a ~25 °C mesogenic range on heating and ~108 °C mesogenic range on cooling. In contrast, dendron 1c possessing different N(n-CmH2m+1)2 (m = 8 versus m = 4) peripheral units, having similar stacking as 1b, exhibited a columnar phase on thermal treatment, but its mesogenic range (~9 and ~66 °C on heating and cooling, respectively) was much narrower than that of 1b, attributed to 1c's less flexible alkyl chains in the peripheral part of dendron. Dendron 1a with the alkoxy substituent in the peripheral skeleton, creating additional dipole correspondingly, thus, leads to the dendritic molecules having a non-mesogenic stacking. Without the peripheral dipole for intermolecular side-by-side interaction, dendrons 1b and 1c exhibit a columnar phase on thermal treatment because of the vibration from the peripheral alkyl chain.

3.
Nanomaterials (Basel) ; 10(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32708863

ABSTRACT

The ability to generate hydrogen in an economic and sustainable manner is critical to the realization of a future hydrogen economy. Electrocatalytic water splitting into molecular hydrogen using the hydrogen evolution reaction (HER) provides a viable option for hydrogen generation. Consequently, advanced non-precious metal based electrocatalysts that promote HER and reduce the overpotential are being widely researched. Here, we report on the development of MoS2-carbon inter-overlapped structures and their applicability for enhancing electrocatalytic HER. These structures were synthesized by a facile hot-injection method using ammonium tetrathiomolybdate ((NH4)2MoS4) as the precursor and oleylamine (OLA) as the solvent, followed by a carbonization step. During the synthesis protocol, OLA not only plays the role of a reacting solvent but also acts as an intercalating agent which enlarges the interlayer spacing of MoS2 to form OLA-protected monolayer MoS2. After the carbonization step, the crystallinity improves substantially, and OLA can be completely converted into carbon, thus forming an inter-overlapped superstructure, as characterized in detail using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A Tafel slope of 118 mV/dec is obtained for the monolayer MoS2-carbon superstructure, which shows a significant improvement, as compared to the 202 mV/dec observed for OLA-protected monolayer MoS2. The enhanced HER performance is attributed to the improved conductivity along the c-axis due to the presence of carbon and the abundance of active sites due to the interlayer expansion of the monolayer MoS2 by OLA.

4.
Biomed Mater Eng ; 26 Suppl 1: S1371-80, 2015.
Article in English | MEDLINE | ID: mdl-26405898

ABSTRACT

Pinhole SPECT for small animal has become a routine procedure in many applications of molecular biology and pharmaceutical development. There is an increasing demand in the whole body imaging of lab animals. A simple and direct solution is to scan the object along a helical trajectory, similar to a helical CT scan. The corresponding acquisition time can be greatly reduced, while the over-lapping and gap between consecutive bed positions can be avoided. However, helical pinhole SPECT inevitably leads to the tremendous increase in computational complexity when the iterative reconstruction algorithms are applied. We suggest a novel voxel-driven (VD) system model which can be integrated with geometric symmetries from helical trajectory for fast iterative image reconstruction. Such a model construction can also achieve faster calculation and lower storage requirement of the system matrix. Due to the independence among various symmetries, it permits parallel coding to further boost computation efficiency of forward/backward projection. From phantom study, the results also indicate that the proposed VD model can adequately model the helical pinhole SPECT scanner with manageable storage size of system matrix and clinically acceptable computation loading of reconstruction.


Subject(s)
Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Imaging, Three-Dimensional/veterinary , Tomography, Emission-Computed, Single-Photon/methods , Tomography, Emission-Computed, Single-Photon/veterinary , Algorithms , Animals , Information Storage and Retrieval/methods , Reproducibility of Results , Sensitivity and Specificity
5.
Comput Med Imaging Graph ; 30(3): 181-5, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16725307

ABSTRACT

Accurate system modeling of the photon acquisition process is essential for optimizing quality in pinhole SPECT imaging. Conventional pinhole SPECT imaging assumes ideal pinhole geometry. However, neglect of pinhole finite aperture could lead to unfavorable quality degradations, such as positioning bias and image distortion. In this work, we develop a system model in which the aperture width of a pinhole collimator is explicitly included. The system model describes the probability of a single photon from its emission to detection. The probability value is calculated based on the effective intersection area resulting from a simulated cone-beam light source emitting from the image voxel, passing through a finite aperture, and reaching the detector's frontal face. The proposed model can be integrated with the ordered subsets expectation maximization (OSEM) algorithm for fast 3D statistical image reconstruction. Monte Carlo-based phantom experiments are used to evaluate the performance of the proposed system model compared to the ideal pinhole model. Reconstructed image results demonstrate that the proposed model can improve image quality in terms of reducing location bias and maintaining better contrast recovery.


Subject(s)
Image Processing, Computer-Assisted/methods , Tomography, Emission-Computed, Single-Photon/instrumentation , Tomography, Emission-Computed, Single-Photon/methods , Algorithms , Animals , Equipment Design , Monte Carlo Method , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...