Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 468: 133841, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38394898

ABSTRACT

Microplastics (MPs) have been recognized as a serious new pollutant, especially nanoplastics (NPs) pose a greater threat to marine ecosystem than larger MPs. Within these ecosystems, phytoplankton serve as the foundational primary producers, playing a critical role in carbon sequestration. Copper (Cu), a vital cofactor for both photosynthesis and respiration in phytoplankton, directly influences their capacity to regulate atmospheric carbon. Therefore, we assessed the impact of NPs on Cu bioavailability and carbon sequestration capacity. The results showed that polystyrene nanoplastics (PS-NPs) could inhibit the growth of Thalassiosira weissflogii (a commonly used model marine diatom) and Chlorella pyrenoidosa (a standard strain of green algae). The concentration of Cu uptake by algae has a significant negative correlation with COPT1 (a Cu uptake protein), but positive with P-ATPase (a Cu efflux protein). Interestingly, PS-NPs exposure could reduce Cu uptake and carbon Cu sequestration capacity of algae, i.e., when the concentration of PS-NPs increases by 1 mg/L, the concentration of fixed carbon dioxide decreases by 0.0023 ppm. This provides a new perspective to reveal the influence mechanisms of PS-NPs on the relationship between Cu biogeochemical cycling and carbon source and sink.


Subject(s)
Chlorella , Diatoms , Water Pollutants, Chemical , Ecosystem , Microplastics , Plastics , Copper , Biological Availability , Carbon Sequestration , Phytoplankton , Polystyrenes
2.
Sci Total Environ ; 883: 163812, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37121328

ABSTRACT

More than 80 % of the primary biomass in marine environments is provided by phytoplankton. The primary mechanism in the trace element sink is the absorption of trace elements by phytoplankton. Because of their difficult degradability and bioaccumulation, petroleum hydrocarbons are one of the most significant and priority organic contaminants in the marine environment. This study chose Chlorella pyrenoidosa as the model alga to be exposed to short and medium-term petroleum hydrocarbons. The ecological risk of accidental and persistent petroleum hydrocarbon contamination was thoroughly assessed. The interaction and intergenerational transmission of phytoplankton physiological markers and trace element absorption were explored to reflect the change in primary biomass and trace element sink. C. pyrenoidosa could produce a large number of reactive oxygen species stimulated by the concentration and exposure time of pollutants, which activated their antioxidant activity (superoxide dismutase (SOD) activity, ß-carotene synthesis, antioxidant trace elements uptake) and peroxides production (hydroxyl radicals and malondialdehyde). The influence of the growth phase on SOD activity, copper absorption, and manganese adsorption in both persistent and accidental pollution was significant (p < 0.05, F > Fα). Adsorption of manganese and selenium positively connected with SOD, malondialdehyde, and Chlorophyl-a (p < 0.01). These findings convincingly indicate that petroleum hydrocarbon contamination can interfere with primary biomass and trace element sinks.


Subject(s)
Chlorella , Petroleum Pollution , Petroleum , Trace Elements , Biomass , Manganese , Hydrocarbons , Phytoplankton , Petroleum/toxicity , Petroleum Pollution/adverse effects , Superoxide Dismutase , Malondialdehyde
3.
Anal Chem ; 94(42): 14801-14809, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36239120

ABSTRACT

Via the photodegradation of dissolved iron (dFe) complexes in the euphotic zone, released free Fe(III) is the most important source of bioavailable iron for eukaryotic phytoplankton. There is an urgent need to establish bioavailability-based dissolved iron speciation (BDIS) methods. Herein, an intelligent system with dFe pretreatment and a colorimetric sensor is developed for real-time monitoring of newly generated Fe(III) ions. According to the photodegradation kinetics of dFe, including kinetic constant and photogenerated time of free Fe(III) ions, 3 sources, 6 kinds, and 12 species of dFe are determined by our photocatalytic-assisted colorimetric sensor and deep learning model within 20.0 min. The algal dFe-uptake for 4 days can be predicted by BDIS with correlation coefficient 0.85, which could be explained by the hard and soft acids and bases theory (HSAB) and density functional theory (DFT). These results successfully demonstrate the proof-of-concept for photodegradation kinetics-based speciation and bioavailability assessments of dissolved metals.


Subject(s)
Deep Learning , Iron , Iron/metabolism , Biological Availability , Photolysis , Colorimetry
4.
Chemosphere ; 307(Pt 4): 136094, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995200

ABSTRACT

Polystyrene (PS) is selected as a representative nanoplastic and persistent pollutant for its difficult degradation and wide application. The environmental risk assessment of PS is obstructed by the toxic dye-based fluorescent PS, which false positives could be induced by the leakage of dye. For high biocompatibility, low toxicity, hydrophilicity, good water dispersibility, strong fluorescent stability, graphene oxide quantum dots (o-CQDs) are selected and embedded into PS microspheres, i.e., o-CQDs@PS, by microemulsion polymerization and denoted as CPS. Meanwhile, the sizes of CPS, e.g., 100, 150, and 200 nm, could be controlled by optimizing the type and number of water-soluble initiators. The anti-interference, low toxicity, and in vivo fluorescent tracing of CPS are proven by the coexistence of metals (including Fe2+, Fe3+, K+, Ba2+, Al3+, Zn2+, Mg2+, Ca2+, and Na+) on the fluorescence intensity of CPS, the growth of Chlorella pyrenoidosa and Artemia cysts as aquatic phytoplankton and zooplankton cultured with CPS, and the transfer of CPS from water into brine shrimp. In the concentration range of 0.1-100 mg/L, CPS can be quantitatively determined, which is suitable for coastal water and wastewater treatment plants. Therefore, CPS with standard size is suitable as reference material of PS.


Subject(s)
Chlorella , Environmental Pollutants , Nanospheres , Quantum Dots , Animals , Artemia/metabolism , Environmental Pollutants/metabolism , Graphite , Microplastics , Polystyrenes/toxicity , Quantum Dots/toxicity , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...