Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1369027, 2024.
Article in English | MEDLINE | ID: mdl-38690163

ABSTRACT

Objective: Metabolic risks (MRs) are the primary determinants of breast cancer (BC) mortality among women. This study aimed to examine the changing trends in BC mortality associated with MRs and explore how they related to age, time period, and birth cohorts in Chinese women aged 25 and above. Methods: Data were sourced from the Global Burden of Disease Study 2019 (GBD2019). The BC mortality trajectories and patterns attributable to MRs were assessed using Joinpoint regression. The age-period-cohort (APC) model was employed to evaluate cohort and time period effects. Results: The age-standardized mortality rate (ASMR) of BC mortality linked to MRs displayed an escalating trend from 1990 to 2019, demonstrating an average annual percentage change (AAPC) of 1.79% (95% CI: 1.69~1.87). AAPCs attributable to high fasting plasma glucose (HFPG) and high body mass index (HBMI) were 0.41% (95% CI: 0.32~0.53) and 2.75% (95% CI: 2.68~2.82), respectively. APC analysis revealed that BC mortality due to HBMI in women aged 50 and above showed a rise with age and mortality associated with HFPG consistently demonstrated a positive correlation with age. The impact of HBMI on BC mortality significantly outweighed that of HFPG. The risk of BC mortality linked to HBMI has steadily increased since 2005, while HFPG demonstrated a trend of initial increase followed by a decrease in the period effect. Regarding the cohort effect, the relative risk of mortality was greater in the birth cohort of women after the 1960s of MRs on BC mortality, whereas those born after 1980 displayed a slight decline in the relative risk (RR) associated with BC mortality due to HBMI. Conclusion: This study suggests that middle-aged and elderly women should be considered as a priority population, and control of HBMI and HFPG should be used as a primary tool to control metabolic risk factors and effectively reduce BC mortality.

2.
Plants (Basel) ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794388

ABSTRACT

The glutathione S-transferases (GSTs, EC 2.5.1.18) constitute a versatile enzyme family with pivotal roles in plant stress responses and detoxification processes. Recent discoveries attributed the additional function of facilitating anthocyanin intracellular transportation in plants to GSTs. Our study identified 178 VcGST genes from 12 distinct subfamilies in the blueberry genome. An uneven distribution was observed among these genes across blueberry's chromosomes. Members within the same subfamily displayed homogeneity in gene structure and conserved protein motifs, whereas marked divergence was noted among subfamilies. Functional annotations revealed that VcGSTs were significantly enriched in several gene ontology and KEGG pathway categories. Promoter regions of VcGST genes predominantly contain light-responsive, MYB-binding, and stress-responsive elements. The majority of VcGST genes are subject to purifying selection, with whole-genome duplication or segmental duplication serving as key processes that drive the expansion of the VcGST gene family. Notably, during the ripening of the blueberry fruit, 100 VcGST genes were highly expressed, and the expression patterns of 24 of these genes demonstrated a strong correlation with the dynamic content of fruit anthocyanins. Further analysis identified VcGSTF8, VcGSTF20, and VcGSTF22 as prime candidates of VcGST genes involved in the anthocyanin intracellular transport. This study provides a reference for the exploration of anthocyanin intracellular transport mechanisms and paves the way for investigating the spectrum of GST functions in blueberries.

3.
Plants (Basel) ; 12(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050050

ABSTRACT

MADS-box is a class of transcriptional regulators that are ubiquitous in plants and plays important roles in the process of plant growth and development. Identification and analysis of blueberry MADS-box genes can lay a foundation for their function investigations. In the present study, 249 putative MADS-box genes were identified in the blueberry genome. Those MADS-box genes were distributed on 47 out of 48 chromosomes. The phylogenetic and evolutionary analyses showed that blueberry MADS-box genes were divided into 131 type I members and 118 type II members. The type I genes contained an average of 1.89 exons and the type II genes contained an average of 7.83 exons. Motif analysis identified 15 conserved motifs, of which 4 were related to the MADS domain and 3 were related to the K-box domain. A variety of cis-acting elements were found in the promoter region of the blueberry MADS-box gene, indicating that the MADS-box gene responded to various hormones and environmental alterations. A total of 243 collinear gene pairs were identified, most of which had a Ka/Ks value of less than 1. Nine genes belonging to SEP, AP3/PI, and AGL6 subfamilies were screened based on transcriptomic data. The expression patterns of those nine genes were also verified using quantitative PCR, suggesting that VcMADS6, VcMADS35, VcMADS44, VcMADS58, VcMADS125, VcMADS188, and VcMADS212 had potential functions in blueberry fruit ripening. The results of this study provide references for an in-depth understanding of the biological function of the blueberry MADS-box genes and the mechanism of blueberry fruit ripening.

4.
Chemosphere ; 290: 133301, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34914960

ABSTRACT

Light acts as a key environmental factor for normal growth and development of plants. Carya cathayensis Sarg. (hickory) faces low light conditions, especially those caused by cloudy or rainy days during the rapid growth period, which has caused adverse effects on its growth. In the current investigation, to alleviate the adverse effects of insufficient light on the cultivation of hickory, anti-hydrolyze stabilized ionic titanium (ASIT) was sprayed on the leaves of the three kinds of grafted seedlings and the non-grafted seedlings of hickory grown under different shade conditions. Results showed that the leaf mass per area and chlorophyll content of grafted hickory seedlings were increased after ASIT application. Rubisco content and photosynthetic rate (Pn) of seedlings grown under shading conditions were positively affected by ASIT treatment, especially on the 45th day of treatment, while the interaction effects of the two parameters between ASIT application and different shade treatments were significant. Titanium accumulation was the highest in roots, followed by leaves, and then in stems, while ASIT had the most significant effects on roots and leaves under 50 ± 5% shade. Severe shading inhibited growth and lead to serious destruction of chloroplast ultrastructure. In addition, the role of ASIT was rootstock-dependent, since ASIT had the weakest mitigation effect on the C/H grafted seedlings. To sum up, the application of ASIT to the grafted seedlings of hickory could improve its ability to resist shade stress.


Subject(s)
Carya , Seedlings , Chlorophyll , Photosynthesis , Plant Leaves , Titanium
5.
Front Plant Sci ; 13: 1060965, 2022.
Article in English | MEDLINE | ID: mdl-36684757

ABSTRACT

Auxin is essential for regulating plant growth and development as well as the response of plants to abiotic stresses. AUX/LAX proteins are auxin influx transporters belonging to the amino acid permease family of proton-driven transporters, and are involved in the transport of indole-3-acetic acid (IAA). However, how AUX/LAX genes respond to abiotic stresses in Chinese hickory is less studied. For the first time identification, structural characteristics as well as gene expression analysis of the AUX/LAX gene family in Chinese hickory were conducted by using techniques of gene cloning and real-time fluorescent quantitative PCR. Eight CcAUX/LAXs were identified in Chinese hickory, all of which had the conserved structural characteristics of AUX/LAXs. CcAUX/LAXs were most closely related to their homologous proteins in Populus trichocarpa , which was in consistence with their common taxonomic character of woody trees. CcAUX/LAXs exhibited different expression profiles in different tissues, indicating their varying roles during growth and development. A number of light-, hormone-, and abiotic stress responsive cis-acting regulatory elements were detected on the promoters of CcAUX/LAX genes. CcAUX/LAX genes responded differently to drought and salt stress treatments to varying degrees. Furthermore, CcAUX/LAX genes exhibited complex expression changes during Chinese hickory grafting. These findings not only provide a valuable resource for further functional validation of CcAUX/LAXs, but also contribute to a better understanding of their potential regulatory functions during grafting and abiotic stress treatments in Chinese hickory.

6.
Plant Physiol Biochem ; 168: 477-487, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34757298

ABSTRACT

Chinese hickory (Carya cathayensis Sarg.) is an important nut tree species native to China. Excessive plant height and long juvenile phase has restricted development of its industry. Recently, grafting has been used increasingly in production practice of this species to solve the problems above. Previous studies have proved the importance of auxin during Chinese hickory grafting. However, the function of ATP-binding cassette subfamily B (ABCB) genes during Chinese hickory grafting is less studied. In this study, 23 ABCB genes were identified and characterized in Chinese hickory (CcABCBs). The expression profiles of auxin-related ABCBs among tissues, under auxin-related phytohormone treatments and during grafting were determined. CcABCB proteins were divided into half-size and full-size transporters. Many phytohormone-related cis-acting regulatory elements were detected on the promoters of CcABCB genes. Four CcABCB genes homologous to auxin-related AtABCB1, 6, 19 and 20 in Arabidopsis were selected for expression analysis. The four genes displayed varying expression patterns in different tissues of Chinese hickory. Expressions of the four CcABCB genes were regulated by auxin-related phytohormones to varying degrees. Expression levels of the four genes were significantly changed at different stages of grafting, especially 7 days after grafting, indicating their involvement of auxin homeostasis regulation during grafting. In addition, the expressions of CcABCB1 were regulated by IAA and NPA treatments during grafting in comparison with CK treatment, while expressions of the other 3 CcABCB genes were slightly affected. This study will lay the foundation for understanding the potential regulatory roles of CcABCB genes during Chinese hickory grafting.


Subject(s)
Arabidopsis , Carya , Arabidopsis/genetics , Carya/genetics , Gene Expression Regulation, Plant , Genes, Plant , Indoleacetic Acids , Plant Growth Regulators
7.
Front Plant Sci ; 12: 772285, 2021.
Article in English | MEDLINE | ID: mdl-35185946

ABSTRACT

With the global temperature increase, diverse endogenous factors and environmental cues can lead to severe obstacles to bud endodormancy release for important economic plants, such as herbaceous peony (Paeonia lactiflora Pall.). Knowing the underlying mechanism in bud endodormancy release is vital for widely planting herbaceous peony at low latitudes with warm winter climates. A systematic study was carried out between the southern Chinese cultivar 'Hang Baishao' with low-chilling requirement (CR) trait and the northern cultivar 'Zhuguang' with high-CR trait. Peony buds were sampled at regular intervals under natural cold during the crucial bud endodormancy release stage. Physiology and morphology of the buds were observed, and the roles of reactive oxygen species (ROS) and relevant genes in the regulation of bud endodormancy release were also highlighted, which has been rather rare in previous bud dormancy studies of both herbaceous and tree peonies. The expression of the starch metabolism- and sucrose synthesis-related genes PlAMY PlSPS and PlSUS was lower in the high-CR 'Zhuguang' and corresponded to a lower content of soluble sugars. The expression of polyamine oxidase gene PlPAO2 correlated with a higher level of hydrogen peroxide (H2O2) in high-CR 'Zhuguang' than in low CR 'Hang Baishao' during bud endodormancy. Expression of PlMAPKKK5, an intermediate gene in the abscisic acid (ABA) response to ROS signaling, correlated with ROS levels and ABA content. We present the hypothesis that accumulation of ROS increases ABA content and decreases GA3 content and signal transduction leading to reduced expression of PlSVP and PlSOC1. Reduced cell division and increased cellular damage which probably blocked bud endodormancy release were also observed in high-CR 'Zhuguang' through histological observation and related genes expression. This study provides a comparative analysis on physiological responses and gene expression patterns of bud dormancy of geophytes in an increasingly unsuitable environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...