Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37267142

ABSTRACT

Snapshot compressive imaging (SCI) cameras compress high-speed videos or hyperspectral images into measurement frames. However, decoding the data frames from measurement frames is compute-intensive. Existing state-of-the-art decoding algorithms suffer from low decoding quality or heavy running time or both, which are not practical for real-time applications. In this article, we exploit the powerful learning ability of deep neural networks (DNN) and propose a novel tensor fast iterative shrinkage-thresholding algorithm net (Tensor FISTA-Net) as a real-time decoder for SCI cameras. Since SCI cameras have an accurate physical model, we can trade training time for the decoding time by generating abundant synthetic data and training a decoder on the cloud. Tensor FISTA-Net not only learns a sparse representation of the frames through convolution layers but also reduces the decoding time and memory consumption significantly through tensor operations, which makes Tensor FISTA-Net an appropriate approach for a real-time decoder. Our proposed Tensor FISTA-Net obtains an average PSNR improvement of 0.79-2.84 dB (video images) and 2.61-4.43 dB (hyperspectral images) over the state-of-the-art algorithms, along with more clear and detailed visual results on real SCI datasets, Hammer and Wheel, respectively. Our Tensor FISTA-Net reaches 45 frames per second in video datasets and 70 frames per second in hyperspectral datasets, meeting the real-time requirement. Besides, the trained model occupies only a 12 -MB memory footprint, making it applicable to real-time Internet of Things (IoT) applications.

2.
Front Public Health ; 11: 1063488, 2023.
Article in English | MEDLINE | ID: mdl-37006568

ABSTRACT

Background: Occupational hazards such as solvents and noise in the electronics industry are serious. Although various occupational health risk assessment models have been applied in the electronics industry, they have only been used to assess the risks of individual job positions. Few existing studies have focused on the total risk level of critical risk factors in enterprises. Methods: Ten electronics enterprises were selected for this study. Information, air samples and physical factor measurements were collected from the selected enterprises through on-site investigation, and then the data were collated and samples were tested according to the requirements of Chinese standards. The Occupational Health Risk Classification and Assessment Model (referred to as the Classification Model), the Occupational Health Risk Grading and Assessment Model (referred to as the Grading Model), and the Occupational Disease Hazard Evaluation Model were used to assess the risks of the enterprises. The correlations and differences between the three models were analyzed, and the results of the models were validated by the average risk level of all of the hazard factors. Results: Hazards with concentrations exceeding the Chinese occupational exposure limits (OELs) were methylene chloride, 1,2-dichloroethane, and noise. The exposure time of workers ranged from 1 to 11 h per day and the frequency of exposure ranged from 5 to 6 times per week. The risk ratios (RRs) of the Classification Model, the Grading Model and the Occupational Disease Hazard Evaluation Model were 0.70 ± 0.10, 0.34 ± 0.13, and 0.65 ± 0.21, respectively. The RRs for the three risk assessment models were statistically different (P < 0.001), and there were no correlations between them (P > 0.05). The average risk level of all of the hazard factors was 0.38 ± 0.18, which did not differ from the RRs of the Grading Model (P > 0.05). Conclusions: The hazards of organic solvents and noise in the electronics industry are not negligible. The Grading Model offers a good reflection of the actual risk level of the electronics industry and has strong practicability.


Subject(s)
Occupational Diseases , Workplace , Humans , Solvents , Occupational Diseases/epidemiology , Risk Assessment , Electronics
3.
Environ Sci Pollut Res Int ; 30(20): 57460-57480, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36964474

ABSTRACT

The impact of global greenhouse gas emissions is increasingly serious, and the development of green low-carbon circular economy has become an inevitable trend for the development of all countries in the world. To achieve emission peak and carbon neutrality is the primary goal of energy conservation and emission reduction. As the core province in central China, Hubei Province is under prominent pressure of carbon emission reduction. In this paper, the future development trend of carbon emissions is analyzed, and the emission peak value and carbon peak time in Hubei Province is predicted. Firstly, the generalized Divisia index method (GDIM) model is proposed to determine the main influencing factors of carbon emissions in Hubei Province. Secondly, based on the main influencing factors identified, a novel STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) extended model with ridge regression is established to predict carbon emissions. Thirdly, the scenario analysis method is used to set the variables of the STIRPAT extended model and to predict the emission peak value and carbon peak time in Hubei Province. The results show that Hubei Province's carbon emissions peaked first in 2025, with a peak value of 361.81 million tons. Finally, according to the prediction results, the corresponding suggestions on carbon emission reduction are provided in three aspects of industrial structure, energy structure, and urbanization, so as to help government establish a green, low-carbon, and circular development economic system and achieve the industry's cleaner production and sustainable development of society.


Subject(s)
Economic Development , Greenhouse Gases , Carbon/analysis , Carbon Dioxide/analysis , Industry , Greenhouse Gases/analysis , China
4.
Front Public Health ; 9: 671070, 2021.
Article in English | MEDLINE | ID: mdl-34095073

ABSTRACT

Malignant pulmonary nodules are one of the main manifestations of lung cancer in early CT image screening. Since lung cancer may have no early obvious symptoms, it is important to develop a computer-aided detection (CAD) system to assist doctors to detect the malignant pulmonary nodules in the early stage of lung cancer CT diagnosis. Due to the recent successful applications of deep learning in image processing, more and more researchers have been trying to apply it to the diagnosis of pulmonary nodules. However, due to the ratio of nodules and non-nodules samples used in the training and testing datasets usually being different from the practical ratio of lung cancer, the CAD classification systems may easily produce higher false-positives while using this imbalanced dataset. This work introduces a filtering step to remove the irrelevant images from the dataset, and the results show that the false-positives can be reduced and the accuracy can be above 98%. There are two steps in nodule detection. Firstly, the images with pulmonary nodules are screened from the whole lung CT images of the patients. Secondly, the exact locations of pulmonary nodules will be detected using Faster R-CNN. Final results show that this method can effectively detect the pulmonary nodules in the CT images and hence potentially assist doctors in the early diagnosis of lung cancer.


Subject(s)
Multiple Pulmonary Nodules , Solitary Pulmonary Nodule , Humans , Lung/diagnostic imaging , Multiple Pulmonary Nodules/diagnostic imaging , Neural Networks, Computer , Solitary Pulmonary Nodule/diagnostic imaging , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...