Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1838, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418810

ABSTRACT

Plastic crystals as barocaloric materials exhibit the large entropy change rivalling freon, however, the limited pressure-sensitivity and large hysteresis of phase transition hinder the colossal barocaloric effect accomplished reversibly at low pressure. Here we report reversible colossal barocaloric effect at low pressure in two-dimensional van-der-Waals alkylammonium halides. Via introducing long carbon chains in ammonium halide plastic crystals, two-dimensional structure forms in (CH3-(CH2)n-1)2NH2X (X: halogen element) with weak interlayer van-der-Waals force, which dictates interlayer expansion as large as 13% and consequently volume change as much as 12% during phase transition. Such anisotropic expansion provides sufficient space for carbon chains to undergo dramatic conformation disordering, which induces colossal entropy change with large pressure-sensitivity and small hysteresis. The record reversible colossal barocaloric effect with entropy change ΔSr ~ 400 J kg-1 K-1 at 0.08 GPa and adiabatic temperature change ΔTr ~ 11 K at 0.1 GPa highlights the design of novel barocaloric materials by engineering the dimensionality of plastic crystals.

2.
Inorg Chem ; 57(8): 4502-4509, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29578339

ABSTRACT

We report the synthesis and characterizations of a new FeSe-based compound CsFe4-δSe4, which is closely related to alkali intercalated FeSe superconductors while exhibits distinct features. It does not undergo phase separation and antiferromagnetic transition. Powder neutron diffractions, electron microscopy and high-angle annular-dark-field images confirm that CsFe4-δSe4 possesses an ordered Cs arrangement as √2 × âˆš2 superstructure, evidencing a B-centered orthorhombic lattice with a space group of Bmmm. The temperature-dependent powder neutron diffractions indicate no structural and magnetic transition from 320 to 5 K. In contrast to the symmetry-breaking in FeSe, this phase naturally possesses the orthorhombic symmetry even at room temperature. DFT calculations and transport measurements reveal a novel Fermi surface geometry with two electron-like sheets centered on Γ point and intermediate density of states at the Fermi level comparing with the value of FeSe and the superconducting A xFe2Se2.

4.
Sci Rep ; 5: 18027, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26673677

ABSTRACT

The most widespread cooling techniques based on gas compression/expansion encounter environmental problems. Thus, tremendous effort has been dedicated to develop alternative cooling technique and search for solid state materials that show large caloric effects. An application of pressure to a material can cause a change in temperature, which is called the barocaloric effect. Here we report the giant barocaloric effect in a hexagonal Ni2In-type MnCoGe0.99In0.01 compound involving magnetostructural transformation, Tmstr, which is accompanied with a big difference in the internal energy due to a great negative lattice expansion(ΔV/V ~ 3.9%). High resolution neutron diffraction experiments reveal that the hydrostatic pressure can push the Tmstr to a lower temperature at a rate of 7.7 K/kbar, resulting in a giant barocaloric effect. The entropy change under a moderate pressure of 3 kbar reaches 52 J kg(-1) K(-1), which exceeds that of most materials, including the reported giant magnetocaloric effect driven by 5 T magnetic field that is available only by superconducting magnets.

5.
Inorg Chem ; 54(24): 11897-905, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26645988

ABSTRACT

MnCl2(urea)2 is a new linear chain coordination polymer that exhibits slightly counter-rotated Mn2Cl2 rhomboids along the chain-axis. The material crystallizes in the noncentrosymmetric orthorhombic space group Iba2, with each Mn(II) ion equatorially surrounded by four Cl(-) that lead to bibridged ribbons. Urea ligands coordinate via O atoms in the axial positions. Hydrogen bonds of the Cl···H-N and O···H-N type link the chains into a quasi-3D network. Magnetic susceptibility data reveal a broad maximum at 9 K that is consistent with short-range magnetic order. Pulsed-field magnetization measurements conducted at 0.6 K show that a fully polarized magnetic state is achieved at Bsat = 19.6 T with another field-induced phase transition occurring at 2.8 T. Zero-field neutron diffraction studies made on a powdered sample of MnCl2(urea)2 reveal that long-range magnetic order occurs below TN = 3.2(1) K. Additional Bragg peaks due to antiferromagnetic (AFM) ordering can be indexed according to the Ib'a2' magnetic space group and propagation vector τ = [0, 0, 0]. Rietveld profile analysis of these data revealed a Néel-type collinear ordering of Mn(II) ions with an ordered magnetic moment of 4.06(6) µB (5 µB is expected for isotropic S = (5)/2) oriented along the b-axis, i.e., perpendicular to the chain-axis that runs along the c-direction. Owing to the potential for spatial exchange anisotropy and the pitfalls in modeling bulk magnetic data, we analyzed inelastic neutron scattering data to retrieve the exchange constants: Jc = 2.22 K (intrachain), Ja = -0.10 K (interchain), and D = -0.14 K with J > 0 assigned to AFM coupling. This J configuration is most unusual and contrasts the more commonly observed AFM interchain coupling of 1D chains.

6.
Sci Rep ; 5: 15910, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26525136

ABSTRACT

Perovskite-related materials have received increasing attention for their broad applications in photovoltaic solar cells and information technology due to their unique electrical and magnetic properties. Here we report three new antiperovskite chalco-halides: Ba3(FeS4)Cl, Ba3(FeS4)Br, and Ba3(FeSe4)Br. All of them were found to be good solar light absorbers. Remarkably, although the shortest Fe-Fe distance exceeds 6 Å, an unexpected anti-ferromagnetic phase transition near 100 K was observed in their magnetic susceptibility measurement. The corresponding complex magnetic structures were resolved by neutron diffraction experiments as well as investigated by first-principles electronic structure calculations. The spin-spin coupling between two neighboring Fe atoms along the b axis, which is realized by the Fe-S···S-Fe super-super exchange mechanism, was found to be responsible for this magnetic phase transition.

7.
Inorg Chem ; 54(3): 969-75, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25575213

ABSTRACT

Low-temperature vaterite-type LuBO(3) (π-LBO) was prepared by a solid-state reaction method at high temperature. The reasoning of the existence of vacancy-stabilized π-LBO was investigated for the first time using neutron diffraction patterns, Fourier transform infrared (FT-IR) spectra, and high-resolution transmission electron microscopy. The results clearly demonstrated that the B and O vacancies in π-LBO came into being during the heating process. The existence of an open B(3)O(9) ring consisting of BO(3) and BO(4) units in π-LBO due to the B and O vacancies was demonstrated by FT-IR. The vacuum ultraviolet-ultraviolet spectroscopic properties of π-LBO were studied in detail. In addition, the luminescence mechanism of Ce(3+) in π-LBO was put forward and discussed with that of calcite-type LuBO(3) (ß-LBO).

8.
J Am Chem Soc ; 137(5): 1746-9, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25629796

ABSTRACT

MnCoGe-based compounds undergo a giant negative thermal expansion (NTE) during the martensitic structural transition from Ni2In-type hexagonal to TiNiSi-type orthorhombic structure. High-resolution neutron diffraction experiments revealed that the expansion of unit cell volume can be as large as ΔV/V ∼ 3.9%. The optimized compositions with concurrent magnetic and structural transitions have been studied for magnetocaloric effect. However, these materials have not been considered as NTE materials partially due to the limited temperature window of phase transition. The as-prepared MnCoGe-based compounds are quite brittle and naturally collapse into powders. By using a few percents (3-4%) of epoxy to bond the powders, we introduced residual stress in the bonded samples and thus realized the broadening of structural transition by utilizing the specific characteristics of lattice softening enforced by the stress. As a result, giant NTE (not only the linear NTE coefficient α but also the operation-temperature window) has been achieved. For example, the average α̅ as much as -51.5 × 10(-6)/K with an operating temperature window as wide as 210 K from 122 to 332 K has been observed in a bonded MnCo0.98Cr0.02Ge compound. Moreover, in the region between 250 and 305 K near room temperature, the α value (-119 × 10(-6)/K) remains nearly independent of temperature. Such an excellent performance exceeds that of most other materials reported previously, suggesting it can potentially be used as a NTE material, particularly for compensating the materials with large positive thermal expansions.

9.
Nature ; 483(7387): 67-9, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22367543

ABSTRACT

Pressure has an essential role in the production and control of superconductivity in iron-based superconductors. Substitution of a large cation by a smaller rare-earth ion to simulate the pressure effect has raised the superconducting transition temperature T(c) to a record high of 55 K in these materials. In the same way as T(c) exhibits a bell-shaped curve of dependence on chemical doping, pressure-tuned T(c) typically drops monotonically after passing the optimal pressure. Here we report that in the superconducting iron chalcogenides, a second superconducting phase suddenly re-emerges above 11.5 GPa, after the T(c) drops from the first maximum of 32 K at 1 GPa. The T(c) of the re-emerging superconducting phase is considerably higher than the first maximum, reaching 48.0-48.7 K for Tl(0.6)Rb(0.4)Fe(1.67)Se(2), K(0.8)Fe(1.7)Se(2) and K(0.8)Fe(1.78)Se(2).

10.
J Am Chem Soc ; 132(45): 16185-90, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-20964423

ABSTRACT

Structural characterization, exploiting X-ray scattering differences at elemental absorption edges, is developed to quantitatively determine crystallographic site-specific metal disorder. We apply this technique to the problem of Zn-Cu chemical disorder in ZnCu(3)(OH)(6)Cl(2). This geometrically frustrated kagomé antiferromagnet is one of the best candidates for a spin-liquid ground state, but chemical disorder has been suggested as a mundane explanation for its magnetic properties. Using anomalous scattering at the Zn and Cu edges, we determine that there is no Zn occupation of the intralayer Cu sites within the kagomé layer; however there is Cu present on the Zn intersite, leading to a structural formula of (Zn(0.85)Cu(0.15))Cu(3)(OH)(6)Cl(2). The lack of Zn mixing onto the kagomé lattice sites lends support to the idea that the electronic ground state in ZnCu(3)(OH)(6)Cl(2) and its relatives is nontrivial.

SELECTION OF CITATIONS
SEARCH DETAIL
...