Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
1.
Int J Biol Macromol ; 272(Pt 1): 132738, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825269

ABSTRACT

Piperine (PIP) has been known for its pharmacological activities with low water solubility and poor dissolution, which limits its nutritional application. The purpose of this research was to enhance PIP stability, dispersibility and biological activity by preparing PIP nanoparticles using the wet-media milling approach combined with nanosuspension solidification methods of spray/freeze drying. Octenyl succinic anhydride (OSA)-modified waxy maize starch was applied as the stabilizer to suppress aggregation of PIP nanoparticles. The particle size, redispersibility, storage stability and in vitro release behavior of PIP nanoparticles were measured. The regulating effect on adipocyte differentiation was evaluated using 3T3-L1 cell model. Results showed that PIP nanoparticles had a reduced particle size of 60 ± 1 nm, increased release rate in the simulated gastric (SGF) and intestinal fluids (SIF) and enhanced inhibition effect on adipogenesis in 3T3-L1 cells compared with free PIP, indicating that PIP-loaded nanoparticles with improved stability and anti-adipogenic property were developed successfully by combining wet-media milling and drying methods.

2.
Sci Adv ; 10(23): eadk8471, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838137

ABSTRACT

Deep random forest (DRF), which combines deep learning and random forest, exhibits comparable accuracy, interpretability, low memory and computational overhead to deep neural networks (DNNs) in edge intelligence tasks. However, efficient DRF accelerator is lagging behind its DNN counterparts. The key to DRF acceleration lies in realizing the branch-split operation at decision nodes. In this work, we propose implementing DRF through associative searches realized with ferroelectric analog content addressable memory (ACAM). Utilizing only two ferroelectric field effect transistors (FeFETs), the ultra-compact ACAM cell performs energy-efficient branch-split operations by storing decision boundaries as analog polarization states in FeFETs. The DRF accelerator architecture and its model mapping to ACAM arrays are presented. The functionality, characteristics, and scalability of the FeFET ACAM DRF and its robustness against FeFET device non-idealities are validated in experiments and simulations. Evaluations show that the FeFET ACAM DRF accelerator achieves ∼106×/10× and ∼106×/2.5× improvements in energy and latency, respectively, compared to other DRF hardware implementations on state-of-the-art CPU/ReRAM.

3.
Crit Rev Food Sci Nutr ; : 1-17, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693696

ABSTRACT

Lipid-based delivery systems (LDS) have emerged as cornerstone techniques for bolstering the bioavailability of lipophilic bioactive compounds, addressing challenges related to solubility, stability, and absorption. This critical review examined a substantial dataset of 6,907 scientific articles and 3,021 patents from 2001-2023, elucidating the multifaceted evolution of LDS, with a particular focus on its industrial and patent-driven perspective. Notably, there were pronounced surges in functional food patent applications in 2004, 2011, and 2019. The trajectory revealed a shift from foundational nanoemulsions to more complex structures, such as double/multiple emulsions, solid lipid nanoparticles, Pickering emulsions, and bigels. The review further identified the top 10 leading institutions shaping this domain. Technologies like spray-drying, microfluidics, and phase gelation had revolutionized the landscape, resulting in refined sensory experiences, innovative reduced-fat formulations, enriched beverages, tailor-made infant nutrition, and nuanced release mechanisms for flavors. The review also spotlighted current research frontiers, notably Pickering emulsions, bigels, and multiple emulsions. These emerging technologies not only exemplified the ongoing innovation in the field but also underscored their potential in reshaping the future landscape of value-added functional foods.

4.
Front Pharmacol ; 15: 1375779, 2024.
Article in English | MEDLINE | ID: mdl-38751784

ABSTRACT

To expand the application of nobiletin (NOB) in semi-solid functional foods, bovine serum albumin (BSA)/carboxymethyl inulin (CMI) complexes-stabilized Pickering emulsion (BCPE) (φoil = 60%, v/v) was fabricated, and the swallowing index and bioavailability of the NOB-loaded Pickering emulsion was evaluated. Confocal laser scanning microscope (CLSM) and cryo-scanning electron microscopy (cryo-SEM) images revealed that BSA/CMI complexes attached to the oil-water interface. NOB-loaded BCPE exhibited a viscoelastic and shear-thinning behavior. Fork drip test results suggested that the textural value of unloaded and NOB-loaded emulsions was International Dysphagia Diet Standardisation Initiative Level 4, which could be swallowed directly without chewing. The in vitro lipolysis model suggested that NOB had a faster digestive profile and a higher bioaccessibility in the BCPE than in the oil suspension. The in vivo rat model revealed that the oral bioavailability of NOB was increased by 2.07 folds in BCPE compared to its bioavailability in unformulated oil. Moreover, BCPE led to a higher plasma concentration of the major demethylated metabolite of NOB (4'-demethylnobiletin) than the unformulated oil. Accordingly, BCPE enhanced the oral bioavailability of NOB by improving bioaccessibility, absorption, and biotransformation.

5.
J Agric Food Chem ; 72(19): 11153-11163, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695891

ABSTRACT

Maillard reaction (MR) plays a pivotal role in the food flavor industry, including a cascade of reactions starting with the reaction between amino compounds and reducing sugars, and thus provides various colors and flavors. A new group of volatile compounds called pyrazinones found in MR are now getting more attention. In this study, eight volatile pyrazinones were found in the asparagine MR systems, in which 3,5-dimethyl- and 3,6-dimethyl-2(1H)-pyrazinones were reported for the first time. The major formation pathways were the reactions between asparagine and α-dicarbonyls, with decarboxylation as a critical step. Besides, novel alternative pathways involving alanine amidation and successive reactions with α-dicarbonyls were explored and successfully formed eight pyrazinones. The major differences between alanine-amidated pathways and decarboxylation pathways are the amidation step and absence of the decarboxylation step. For the alanine-amidated pathways, the higher the temperature, the better the amidation effect. The optimal amidation temperature was 200 °C in this study. The reaction between the alanine amide and α-dicarbonyls after amidation can happen at low temperatures, such as 35 and 50 °C, proposing the possibility of pyrazinone formation in real food systems. Further investigations should be conducted to investigate volatile pyrazinones in various food systems as well as the biological effects and kinetic formation differences of the volatile pyrazinones.


Subject(s)
Alanine , Asparagine , Maillard Reaction , Pyrazines , Volatile Organic Compounds , Pyrazines/chemistry , Alanine/chemistry , Asparagine/chemistry , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry
6.
J Agric Food Chem ; 72(18): 10570-10578, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38652024

ABSTRACT

Amadori rearrangement products (ARPs) are gaining more attention for their potential usage in the food flavor industry. Peptide-ARPs have been studied, but pyrazinones that were theoretically found in the Maillard reaction (MR) have not been reported to be formed from small peptide-ARPs. This study found four pyrazinones: 1-methyl-, 1,5-dimethyl-, 1,6-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones in both MR and ARP systems. It was the first time 1-methyl-2(1H)-pyrazinone was reported, along with 1,5-dimethyl- and 1,5,6-trimethyl-2(1H)-pyrazinones being purified and analyzed by nuclear magnetic resonance for the first time. The primary formation routes of the pyrazinones were also proven as the reaction between diglycine and α-dicarbonyls, including glyoxal, methylglyoxal, and diacetyl. The pyrazinones, especially 1,5-dimethyl-2(1H)-pyrazinone, have strong fluorescence intensity, which may be the reason for the increase of fluorescence intensity in MR besides α-dicarbonyls. Cytotoxicity analysis showed that both Gly-/Digly-/Trigly-ARP and the three pyrazinones [1-methyl-, 1,5-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones] showed no prominent cytotoxicity in the HepG2 cell line below 100 µg/mL, further suggesting that ARPs or pyrazinones could be used as flavor additives in the future. Further research should be conducted to investigate pyrazinones in various systems, especially the peptide-ARPs, which are ubiquitous in real food systems.


Subject(s)
Maillard Reaction , Pyrazines , Pyrazines/chemistry , Humans , Flavoring Agents/chemistry , Volatile Organic Compounds/chemistry , Peptides/chemistry , Glyoxal/chemistry
7.
J Agric Food Chem ; 72(13): 7344-7353, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38502793

ABSTRACT

Amadori rearrangement products of asparagine with glucose (Asn-Glc-ARP) were first prepared through Maillard model reactions and identified via liquid chromatography-mass spectroscopy. With the study on the effect of the reaction temperature, pH values, and reaction time, the ideal reaction condition for accumulation of Asn-Glc-ARP was determined at 100 °C for 40 min under pH 7. Asparagine (Asn) was prone to degrade from Asn-Glc-ARP in alkaline pH values within a lower temperature range, while in an acidic environment with high temperatures, deamidation of Asn-Glc-ARP to Asp-Glc-ARP (Amadori rearrangement products of aspartic acid with glucose) was displayed as the dominant pathway. The deamidation reaction on the side chain of the amide group took place at Asn-Glc-ARP and transferred it into the hydroxyl group, forming Asp-Glc-ARP at the end. Considering that lyophilization as pretreatment led to limited water activity, a single aspartic acid was not deamidated from Asn directly nor did it degrade from Asp-Glc-ARP even at 120 °C. The degradation of Asn-Glc-ARP through tandem mass spectrometry (MS/MS) analysis showed the obvious fragment ion at m/z 211, indicating that the stable oxonium ion formed during fragmentation. The structure of Asn-Glc-ARP was proposed as 1-deoxy-1-l-asparagino-d-fructose after separation and purification. Also, the content of Asn-Glc-ARP within dry jujube fruit (HeTianYuZao) was quantitated as high as 8.1 ± 0.5 mg/g.


Subject(s)
Asparagine , Glucose , Plant Extracts , Ziziphus , Asparagine/chemistry , Glucose/chemistry , Tandem Mass Spectrometry , Maillard Reaction , Aspartic Acid
8.
Food Res Int ; 181: 114116, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448100

ABSTRACT

Cantonese soy sauce (CSS) is an important Chinese condiment due to its distinctive flavor. Microorganisms play a significant role in the flavor formation of CSS during fermentation. However, the correlation between microbes and flavor compounds as well as the potential fermentation mechanism remained poorly uncovered. Here we revealed the dynamic changes of microbial structure and characteristics metabolites as well as their correlation of CSS during the fermentation process. Metagenomics sequencing analysis showed that Tetragenococcus halophilus, Weissella confusa, Weissella paramesenteroides, Aspergillus oryzae, Lactiplantibacillus plantarum, Weissella cibaria were top six dominant species from day 0 to day 120. Sixty compounds were either positively or tentatively identified through untargeted metabolomics profile and they were 27 peptides, amino acids and derivatives, 8 carbohydrates and conjugates, 14 organic acids and derivatives, 5 amide compounds, 3 flavonoids and 3 nucleosides. Spearman correlation coefficient indicated that Tetragenococcus halophilus, Zygosaccharomyces rouxii, Pediococcus pentosaceus and Aspergillus oryzae were significantly related with the formation of taste amino acids and derivatives, peptides and functional substances. Additionally, the metabolisms of flavor amino acids including 13 main free amino acids were also profiled. These results provided valuable information for the production practice in the soy sauce industry.


Subject(s)
Aspergillus oryzae , Enterococcaceae , Soy Foods , Fermentation , Amino Acids , Aspergillus oryzae/genetics , Peptides
10.
Food Res Int ; 177: 113875, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225139

ABSTRACT

Mulberry leaves (MLs) are reported to have beneficial effects in modulating obesity in male models. However, the impact of different types of mulberry leaf extracts (MLEs) on female models, specifically their influence on adipocytes, gut microbiota, and related metabolic markers, remains poorly understood. In this study, we observed a strong correlation between the total phenolic content (TPC), antioxidant and adipocyte modulation effects of water extracted MLEs. HB-W (water-extracted baiyuwang) and HY-W (water-extracted Yueshen) demonstrated remarkable inhibition effects on adipocytes in 3 T3-L1 adipocytes model. Moreover, MLEs effectively reduced the levels of triglycerides (TG), non-esterified fatty acids (NEFA), and total cholesterol (T-CHO) in adipocytes in vitro. In vivo experiments conducted on female mice with high fat diet (HFD)-induced obesity revealed the anti-obesity effects of HB-W and HY-W, leading to a significant decrease in weight gain rates and notable influence on the ratios of adipose tissue, particularly white adipose tissue (WAT). Gene expression analysis demonstrated the up-regulation of WAT-related genes (Pla2g2a and Plac8) by HB-W, while HY-W supplementation showed beneficial effects on the regulation of blood sugar-related genes. Furthermore, both HB-W and HY-W exhibited modulatory effects on obesity-related gut microbiota (Firmicutes-to-Bacteroidetes ratio) and short chain fatty acid (SCFA) contents. Importantly, they also mitigated abnormalities in liver function and uncoupling protein 1 (UPC1) expression. Overall, our findings underscore the anti-obesity effects of MLEs in female rats with high-fat diet-induced obesity.


Subject(s)
Gastrointestinal Microbiome , Morus , Male , Female , Rats , Mice , Animals , Diet, High-Fat/adverse effects , Obesity/metabolism , Adipose Tissue, White , Water
11.
J Agric Food Chem ; 72(1): 657-669, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109376

ABSTRACT

Amadori rearrangement products (ARPs), as intermediates of the Maillard reaction (MR), are potential natural flavor additives but there is a lack of investigation especially in oligopeptide-ARPs. This study for the first time conducted a systematic analysis in comparing ARPs of glycine, diglycine, triglycine, and glucose to corresponding classic MR systems, including production, stability, and flavor analysis. The ARPs were effectively produced by prelyophilization with heating at 70 °C for 60 min and purified to 96% by a two-step purification method. Correlated with the stability order of amino compounds (glycine > diglycine > triglycine), the stability order of ARPs was Gly-ARP > Digly-ARP ≈ Trigly-ARP. In a negative correlation with heating temperature and time, ARPs were less stable than original amino compounds at high temperatures (100, 130, and 160 °C). ARPs exhibited better flavor formation ability in pyrazines and furans than MR systems, with similar flavor compositions but different preferences. Diglycine- and triglycine-ARPs exhibited better flavor formation efficiency than glycine-ARP. Heating temperature and time, initial pH, and carbon chain length were found to be the parameters that affect the stability and flavor formation of ARPs. This study suggested that ARPs, especially peptide-ARPs, have great potential for usage as food flavor additives in the future.


Subject(s)
Glycine , Glycylglycine , Glycine/chemistry , Food Additives , Flavoring Agents/chemistry , Glucose/chemistry , Feasibility Studies , Oligopeptides , Maillard Reaction
12.
Foods ; 12(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37959016

ABSTRACT

To produce food-grade ice nucleators, a 3.77 kb ice nucleation gene (iceE) isolated from Pantoea agglomerans (Erwinia herbicola) was introduced into the Gram-positive microorganism Bacillus amyloliquefaciens for the first time. The differential scanning calorimetry (DSC) results indicated that recombined strain B9-INP was an effective ice nucleator for controlling the supercooling point of distilled water at low concentrations. In the presence of B9-INP cells, model food systems, including sucrose solution and sodium chloride solution, different pH solutions froze at a relatively high subzero temperature, thus increasing the supercooling point by 5.8~16.7 °C. Moreover, B9-INP also facilitated model and real food systems to freeze at -6 °C. This recombinant strain not only improved the freezing temperature of food systems but also shortened the total freezing time, thus saving energy and reducing consumption. The results suggest that B9-INP has great application potential in the frozen food industry.

13.
Phys Chem Chem Phys ; 25(41): 28272-28281, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37830226

ABSTRACT

In this study, we employ coarse-grained molecular dynamics simulations to explore the microstructure of MSA (methanesulfonic acid)-type electroplating solution, containing Sn(MSA)2 as the primary salt, MSA as the stabilizer, amphiphilic alkylphenol ethoxylate (APEO) as surfactants and cinnamaldehyde (CA) as the brightener agents, as well as water as the solvent. Our simulation indicates that temperature variations can significantly affect the structural properties of the electroplating solution and the adsorption behavior of its key components onto the substrate. Specifically, at low temperatures, the primary salt ions aggregate into ionic clusters, and the amphiphilic APEO surfactants and CA molecules form micelles composed of hydrophobic cores and hydrophilic shells, which reduces the uniformity of the solution and hinders the adsorption of ions, CA and surfactants onto the substrate. Appropriately increasing the temperature can weaken the aggregation of these components in bulk solution due to the accelerated molecular movements and arouse their adsorption. However, on further increasing the temperature, the elevated kinetic energy of the components thoroughly overwhelms the adsorption interactions, and therefore, the ions, surfactants, and CA desorb from the substrate and redissolve into the solution. We systematically analyze the complex interactions between these components at different temperatures and clarify the mechanism of the non-monotonic dependence of adsorption strength on the temperature at the molecular level. Our simulations demonstrate that there is low-temperature scope for reprocessing/recycling and intermediate-temperature scope for substrate-adsorptions of the key components. This study confers insights into a fundamental understanding of the microscopic mechanism for electroplating and can provide guidance for the development of precise electroplatings.

14.
Small ; 19(42): e2302086, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37323104

ABSTRACT

The comparatively poor endurance of Ni-rich cathode materials restricts their application in high-energy lithium-ion batteries. A thorough understanding of the degradation characteristics of such materials under complex electrochemical aging protocols is required to further improve their reliability. In this work, the irreversible capacity losses of LiNi0.8 Mn0.1 Co0.1 O2 under different electrochemical aging protocols are quantitatively evaluated via a well-designed experiment. In addition, it is discovered that the origin of irreversible capacity losses is highly related to electrochemical cycling parameters and can be divided into two types. Type I is heterogeneous degradation caused by low C-rate or high upper cut-off voltage cycling and features abundant capacity loss during H2-H3 phase transition. Such capacity loss is attributed to the irreversible surface phase transition that limits the accessible state of charge during the H2-H3 phase transition stage via the pinning effect. Type II is fast charging/discharging induced homogeneous capacity loss that occurs consistently throughout the whole phase transition time. This degradation pathway shows a distinctive surface crystal structure, which is dominated by a bending layered structure rather than a typical rock-salt phase structure. This work offers detailed insight into the failure mechanism of Ni-rich cathodes and provides guidance on designing long-cycle life, high-reliability electrode materials.

15.
J Agric Food Chem ; 71(26): 10050-10064, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37345674

ABSTRACT

3,5,6,7,8,3',4'-Heptamethoxyflavone (HMF) could prevent obesity and hyperlipidemia, but its effects on gut microbiota and fecal metabolites remain unclear. Here, the effect of HMF on metabolic syndrome (MS) was evaluated in high-fat diet (HFD)-fed mice, and its underlying mechanisms were revealed by integrative metagenomic and metabolomic analyses. We demonstrated that HMF could effectively ameliorate HFD-induced MS by alleviating body-weight gain, fat accumulation, hepatic steatosis, and lipid and glucose abnormalities. HMF significantly altered the gut microbiota composition in HFD-fed mice with enrichment of short-chain fatty acid (SCFA)- and bile acid-producing beneficial bacteria and inhibition of harmful bacteria. Also, HMF improved microbial functions by up-regulating bile acid metabolism and down-regulating fatty acid metabolism and inflammatory response-related pathways. Consistent with the gut microbial changes, HMF altered the fecal metabolite profile of HFD-fed mice, mainly characterized by increasing SCFA and several bile acid levels as well as lowering several lysophospholipids and fatty acid levels. Correlation analysis indicated that three key species Faecalibaculum rodentium, Collinsella aerofaciens, and Lactobacillus fermentum and the increase in microbial metabolites, i.e., SCFAs and secondary bile acids, might play a positive role in alleviating MS. Our results suggested that HMF alleviated HFD-induced MS possibly by modulating the composition, function, and metabolism of gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Mice , Animals , Metabolic Syndrome/drug therapy , Metabolic Syndrome/genetics , Diet, High-Fat/adverse effects , Lipid Metabolism , Fatty Acids, Volatile/pharmacology , Bile Acids and Salts/pharmacology , Mice, Inbred C57BL
16.
Food Funct ; 14(13): 6212-6225, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37345830

ABSTRACT

Lipid-based delivery systems are commonly used to encapsulate hydrophobic bioactive compounds for enhancing their bioaccessibility and bioavailability, especially for triacylglycerol (TAG) oil-based delivery systems. However, studies on the development of 1,3-diacylglycerol (DAG) oil-based delivery systems are rather limited. Herein, the influence of 1,3-DAG oil as a carrier oil on the properties of nanoemulsions and the bioaccessibility of encapsulated hydrophobic nobiletin (NOB) were investigated. High-purity 1,3-DAG (over 93% pure) was prepared by a combination of enzymatic esterification and ethanol crystallization. 1,3-DAG oil as a carrier oil could be used to formulate nanoemulsions with smaller droplet size, narrower size distribution and similar stability compared to TAG oil. Importantly, 1,3-DAG oil could efficiently encapsulate high-loading NOB (1.45 mg g-1) in nanoemulsions and significantly improve the bioaccessibility of NOB (above 80%), which is attributable to its massive lipolysis and higher encapsulation capacity than TAG oil. Moreover, the addition of the 1,3-DAG component in TAG oil significantly improved the properties of nanoemulsions and the loading and bioaccessibility of NOB, especially as the 1,3-DAG content was not less than 50%. The structure of lipids (DAG versus TAG) influenced the nanoemulsion properties and the bioaccessibility of encapsulated NOB. Based on the good properties of 1,3-DAG oil coupled with its health benefits, 1,3-DAG oil-based nanoemulsion delivery systems have great prospects for improving and extending emulsion properties and bioactivity as well as bioaccessibility enhancement.


Subject(s)
Diglycerides , Biological Availability , Digestion , Emulsions/chemistry , Triglycerides/chemistry
17.
Int J Biol Macromol ; 242(Pt 4): 125154, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37268081

ABSTRACT

Polysaccharide-polypeptide nanocomplexes are promising colloidal Pickering stabilizers. The resulting Pickering emulsions, however, are susceptible to pH and ionic strength changes. This phenomenon was also observed in our recently developed Pickering emulsions stabilized by the chitosan (CS)-caseinophosphopeptides (CPPs) nanocomplexes. To improve the stability of these Pickering emulsions, we herein crosslinked the CS-CPPs nanocomplexes with a natural crosslinker genipin. The genipin-crosslinked CS-CPPs nanocomplexes (GCNs) were used to prepare Pickering emulsions. The impacts of genipin concentration, crosslinking temperature, and duration on the characteristics of GCNs and the GCNs-stabilized Pickering emulsions (GPEs) were systemically investigated. GCNs showed crosslinking strength-dependent variations in their physical properties. Crosslinking at a weak or strong condition weakened the emulsification ability of GCNs at low concentrations. A strong crosslinking condition also compromised the capacity of GCNs to stabilize a high fraction of oil. GPEs were oil-in-water type and gel-like. GCNs crosslinked at a lower temperature and for a shorter crosslinking duration stabilized stronger gel-like GPEs. Moreover, GPEs had high pH and ionic strength stabilities. This work provided a feasible way to enhance the stability and regulate the physical properties of Pickering emulsions stabilized by polysaccharide-polypeptide nanocomplexes.


Subject(s)
Chitosan , Chitosan/chemistry , Emulsions/chemistry , Iridoids , Polysaccharides , Particle Size
18.
J Agric Food Chem ; 71(18): 7090-7098, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37126799

ABSTRACT

Maillard reaction products obtained from the model system of binary amino acids (asparagine and proline) with glucose were first studied. GC-MS results showed that proline-specific aromatic compounds, 2,3-dihydro-1H-pyrrolizines and cyclopent[b]azepin-8(1H)-ones, were dominant among overall products, followed by pyrazines at different temperatures. Aspartic acid was first applied to model reactions as the precise control of asparagine deamidation, and lysine was further introduced into model systems for improving pyrazine formation. Quantitative results of model reaction products demonstrated that pyrazines were not significantly increased in deamidated states (Asn-Asp-Pro and Asp-Pro) while proline-specific compounds had a rapid enhancement at the same time. With excellent ability to form pyrazines, lysine did help to increase the formation of pyrazines, but still far fewer than pyrrolizines and azepines. It was assumed that proline would preferentially react with α-dicarbonyl compounds in Maillard reaction cascades with lower activation energies.


Subject(s)
Asparagine , Maillard Reaction , Asparagine/chemistry , Proline , Lysine , Pyrazines/chemistry , Glucose/chemistry
19.
Food Chem ; 419: 135995, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37003053

ABSTRACT

Most previous studies on volatile compounds in soy sauce were performed by gas chromatography-mass spectrometry (GC-MS). In this study, the volatile compounds of high-salt liquid-state fermentation soy sauce (HLFSS) were analyzed qualitatively and quantitatively by GC-MS and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). One hundred and seventy-four substances were detected using the two instruments, 87 by HS-GC-IMS and 127 by GC-MS. Aldehydes (26), ketones (28), esters (29), and alcohols (26) were the main compounds in HLFSS. In addition, ethyl pyruvate, (E)-2-pentenal and diethyl propanedioate were detected by HS-GC-IMS, which were previously not detected in HLFSS. Forty-eight aromatics including 34 key ones were identified by gas chromatography-olfactometry. Phenylacetaldehyde, methional, 2-methylbutanal, 1-octen-3-ol, ethyl acetate, 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone, 4-hydroxy-2,5-dimethyl-3(2H)-furanone and 4-ethyl guaiacol were identified as the main aroma compounds in HLFSS by aroma recombination and omission test. This study laid foundation for developing flavor assessment standards for soy sauce.


Subject(s)
Soy Foods , Volatile Organic Compounds , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods , Olfactometry/methods , Soy Foods/analysis , Ion Mobility Spectrometry , Sodium Chloride , Sodium Chloride, Dietary , Volatile Organic Compounds/analysis
20.
Int J Biol Macromol ; 241: 124598, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37119890

ABSTRACT

The blending of natural polysaccharides with synthetic polymers has attracted much attention in drug delivery models owing to their remarkable biodegradable and biocompatible characteristics. This study focuses on the facile preparation of a sequence of composite films having Starch/Poly(allylamine hydrochloride) (ST/PAH) in different compositions to propose a novel drug delivery system (DDS). ST/PAH blend films were developed and characterized. FT-IR evaluation confirmed the involvement of intermolecular H-bonding between the ST and PAH counterparts in blended films. The water contact angle (WCA) ranged from 71° to 100° indicating that all the films were hydrophobic. TPH-1 (90 % ST and 10 % PAH) was evaluated for in vitro controlled drug release (CDR) at 37 ± 0.5 °C in a time-dependent fashion. CDR was recorded in phosphate buffer saline (PBS) and simulated gastric fluid (SGF). In the case of SGF (pH 1.2), the percentile drug release (DR) for TPH-1 was approximately 91 % in 110 min, while the maximum DR was 95 % in 80 min in PBS (pH 7.4) solution. Our results demonstrate that the fabricated biocompatible blend films can be a promising candidate for a sustained-release DDS for oral drug administration, tissue engineering, wound dressings, and other biomedical applications.


Subject(s)
Drug Delivery Systems , Starch , Starch/chemistry , Drug Liberation , Spectroscopy, Fourier Transform Infrared , Drug Delivery Systems/methods , Delayed-Action Preparations
SELECTION OF CITATIONS
SEARCH DETAIL
...