Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 9(13): 3598-3603, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29905077

ABSTRACT

Lead selenide (PbSe) colloidal quantum dots (CQDs) are considered to be a strong candidate for high-efficiency colloidal quantum dot solar cells (CQDSCs) due to its efficient multiple exciton generation. However, currently, even the best PbSe CQDSCs can only display open-circuit voltage ( Voc) about 0.530 V. Here, we introduce a solution-phase ligand exchange method to prepare PbI2-capped PbSe (PbSe-PbI2) CQD inks, and for the first time, the absorber layer of PbSe CQDSCs was deposited in one step by using this PbSe-PbI2 CQD inks. One-step-deposited PbSe CQDs absorber layer exhibits fast charge transfer rate, reduced energy funneling, and low trap assisted recombination. The champion large-area (active area is 0.35 cm2) PbSe CQDSCs fabricated with one-step PbSe CQDs achieve a power conversion efficiency (PCE) of 6.0% and a Voc of 0.616 V, which is the highest Voc among PbSe CQDSCs reported to date.

2.
ACS Appl Mater Interfaces ; 10(31): 26142-26152, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-28862833

ABSTRACT

Using spatial energy-level gradient engineering with quantum dots (QDs) of different sizes to increase the generated carrier collection at the junction of a QD heterojunction solar cell (QDHSC) is a hopeful route for improving the energy-conversion efficiency. However, the results of current related research have shown that a variable band-gap structure in a QDHSC will create an appreciable increase, not in the illumination current density, but rather in the fill factor. In addition, there are a lack of studies on the mechanism of the effect of these graded structures on the photovoltaic performance of QDHSCs. This study presents the development of air atmosphere solution-processed TiO2/PbS QDs/Au QDHSCs by engineering the energy-level alignment (ELA) of the active layer via the use of a sorted order of differently sized QD layers (four QD sizes). In comparison to the ungraded device (without the ELA), the optimized graded architecture (containing the ELA) solar cells exhibited a great increase (21.4%) in short-circuit current density ( Jsc). As a result, a Jsc value greater than 30 mA/cm2 has been realized in planar, thinner absorption layer (∼300 nm) PbS QDHSCs, and the open-circuit voltage ( Voc) and power-conversion efficiency (PCE) were also improved. Through characterization by the light intensity dependences of the Jsc and Voc and transient photovoltage decay, we find that (i) the ELA structure, serving as an electron-blocking layer, reduces the interfacial recombination at the PbS/anode interface, and (ii) the ELA structure can drive more carriers toward the desirable collection electrode, and the additional carriers can fill the trap states, reducing the trap-assisted recombination in the PbS QDHSCs. This work has clearly elucidated the mechanism of the recombination suppression in the graded QDHSCs and demonstrated the effects of ELA structure on the improvement of Jsc. The charge recombination mechanisms characterized in this work would be able to shed light on further improvements of QDHSCs, which could even benefit other types of solar cells.

3.
J Phys Chem Lett ; 8(10): 2163-2169, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28447790

ABSTRACT

A novel organic small molecule bis-triphenylamine with spiro(fluorene-9,9'-xanthene) as the conjugated system, named BTPA-4, is successfully synthesized and employed as the hole-selective layer (HSL) in colloidal quantum dots solar cells (CQDSCs). The introduction of BTPA-4 layer can significantly prolong effective carrier lifetime (τeff), increase charge recombination resistance (Rrec), and thus diminish the interfacial charge recombination at the PbS-QDs/Au electrode interface. The effect of BTPA-4 as HSL in the device performance is especially significant for the open-circuit voltage (Voc) and power conversion efficiency (PCE), with a ∼ 10% and 15% enhancement respectively, comparing with those of device without the HSL. Furthermore, the PbS CQDSCs with BTPA-4 possessed a noticeably stable property for over 100 days of storage under ambient atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...