Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36010960

ABSTRACT

For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.

2.
Oncol Rep ; 48(1)2022 07.
Article in English | MEDLINE | ID: mdl-35593307

ABSTRACT

Medulloblastoma (MB) is the most frequent malignant brain tumor in pediatrics. Since the current standard of care for MB consisting of surgery, cranio­spinal irradiation and chemotherapy often leads to a high morbidity rate, a number of patients suffer from long­term sequelae following treatment. Targeted therapies hold the promise of being more effective and less toxic. Therefore, the present study aimed to identify hub genes with an upregulated expression in MB and to search for potential therapeutic targets from these genes. For this purpose, gene expression profile datasets were obtained from the Gene Expression Omnibus database and processed using R 3.6.0 software to screen differentially expressed genes (DEGs) between MB samples and normal brain tissues. A total of 282 upregulated and 436 downregulated DEGs were identified. Functional enrichment analysis revealed that the upregulated DEGs were predominantly enriched in the cell cycle, DNA replication and cell division. The top 10 hub genes were identified from the protein­protein interaction network of upregulated genes, and one identified hub gene [PDZ binding kinase (PBK)] was selected for further investigation due to its possible role in the pathogenesis of MB. The aberrant expression of PBK in MB was verified in additional independent gene expression datasets. Survival analysis demonstrated that a higher expression level of PBK was significantly associated with poorer clinical outcomes in non­Wingless MBs. Furthermore, targeting PBK with its inhibitor, HI­TOPK­032, impaired the proliferation and induced the apoptosis of two MB cell lines, with the diminished phosphorylation of downstream effectors of PBK, including ERK1/2 and Akt, and the activation of caspase­3. Hence, these results suggest that PBK may be a potential prognostic biomarker and a novel candidate of targeted therapy for MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Cerebellar Neoplasms/genetics , Child , Computational Biology/methods , Extracellular Signal-Regulated MAP Kinases , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Medulloblastoma/genetics , Protein Interaction Maps
3.
Front Mol Biosci ; 8: 755911, 2021.
Article in English | MEDLINE | ID: mdl-34859049

ABSTRACT

Background: PDZ binding kinase (PBK) is a serine/threonine kinase, which belongs to the mitogen-activated protein kinase kinase (MAPKK) family. It has been shown to be a critical gene in the regulation of mitosis and tumorigenesis, but the role of PBK in various cancers remains unclear. In this study, we systematically explored the prognostic and predictive value of PBK expression in 33 cancer types. Methods: Public databases including the cBioPortal database, GDSC database, GTEx database, CCLE database, and TCGA database were used to detect the PBK expression and its association with the prognosis, clinicopathologic stage, TMB, MSI, immune microenvironment, immune checkpoints, immune cell infiltration, enrichment pathways, and IC50 across pan-cancer. The statistical analyses and visualization were conducted using R software. Results: PBK expression is relatively high in most cancers compared to their normal counterparts, and this gene is barely expressed in normal tissues. High expression of PBK is significantly associated with poor prognosis and clinicopathologic stages I, II, and III in different cancers. Furthermore, PBK expression is strongly associated with TMB in 23 cancer types and associated with MSI in nine cancer types. Moreover, the correlation analysis of the microenvironment and immune cells indicated that PBK is negatively correlated with the immune infiltration levels but positively correlated with the infiltration levels of M0 and M1 macrophages, T cells CD4 memory activated, and T cells follicular helper. GSEA analysis revealed that the biological function or pathways relevant to the cell cycle and mitosis were frequently enriched at the level of high expression of PBK. Conclusion: These results revealed the oncogenic role of PBK, which is significantly upregulated in various cancers and indicated poor prognosis and immune infiltration in multiple cancers. It also suggested that PBK may serve as a biomarker in multiple tumor progress and patient survival.

4.
Front Oncol ; 11: 698835, 2021.
Article in English | MEDLINE | ID: mdl-34490096

ABSTRACT

BACKGROUND: Neuronal activity regulated by synaptic communication exerts an important role in tumorigenesis and progression in brain tumors. Genes for soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) annotated with the function 'vesicle' about synaptic connectivity were identified, and synaptosomal-associated protein 25 (SNAP25), one of those proteins, was found to have discrepant expression levels in neuropathies. However, the specific mechanism and prognostic value of SNAP25 during glioma progression remain unclear. METHODS: Using RNA sequencing data from The Cancer Genome Atlas (TCGA) database, the differential synaptosis-related genes between low grade glioma (LGG) and glioblastoma (GBM) were identified as highly correlated. Cox proportional hazards regression analysis and survival analysis were used to differentiate the outcome of low- and high-risk patients, and the Chinese Glioma Genome Atlas (CGGA) cohort was used for validation of the data set. RT-qPCR, western blot, and immunohistochemistry assays were performed to examine the expression level of SNAP25 in glioma cells and samples. Functional assays were performed to identify the effects of SNAP25 knockdown and overexpression on cell viability, migration, and invasion. Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics approach was presented for identifying crucial metabolic disturbances in glioma cells. In situ mouse xenograft model was used to investigate the role of SNAP25 in vivo. Then, an immunofluorescence assay of the xenograft tissue was applied to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2). RESULTS: SNAP25 was decreased in level of expression in glioma tissues and cell lines, and low-level SNAP25 indicated an unfavorable prognosis of glioma patients. SNAP25 inhibited cell proliferation, migration, invasion and fostered glutamine metabolism of glioma cells, exerting a tumor suppressor role. Overexpressed SNAP25 exerted a lower expression level of MAP2, indicating poor neuronal plasticity and connectivity. SNAP25 could regulate glutaminase (GLS)-mediated glutaminolysis, and GLS knockdown could rescue the anti-tumor effect of SNAP25 in glioma cells. Moreover, upregulated SNAP25 also decreased tumor volume and prolonged the overall survival (OS) of the xenograft mouse. CONCLUSION: SNAP25, a tumor suppressor inhibited carcinogenesis of glioma via limiting glutamate metabolism by regulating GLS expression, as well as inhibiting dendritic formation, which could be considered as a novel molecular therapeutic target for glioma.

5.
Front Neurol ; 12: 669276, 2021.
Article in English | MEDLINE | ID: mdl-34220678

ABSTRACT

Carotid artery dissection (CAD) is the leading cause of ischemic stroke in young patients; however, the etiology and pathophysiology of CAD remain largely unknown. In our study, two types of dissections (length × width: 1.5 cm × 1/3 circumference of intima, Group I, n = 6; or 1.5 cm × 2/3 circumference of intima, Group II, n = 6) were created between the media and intima. Ultrasound (within 2 h after dissection) showed a dissociated intima in the lumen and obstructed blood flow in the surgical area. Digital subtraction angiography (DSA, 72 h after dissection), magnetic resonance imaging (MRI, 72 h after dissection), and hematoxylin-eosin (H&E, 7 days after dissection) staining confirmed stenosis (33.67 ± 5.66%) in Group I and total occlusion in Group II. In 10 out of 12 swine, the CAD model was established using a detacher and balloon dilation, and morphological outcomes (stenosis or occlusion) after CAD were determined by the size of intimal incision.

6.
FASEB J ; 35(7): e21748, 2021 07.
Article in English | MEDLINE | ID: mdl-34152016

ABSTRACT

Although adipose-derived human mesenchymal stem cell (hADSC) transplantation has recently emerged as a promising therapeutic modality for Parkinson's disease (PD), its underlying mechanism of action has not been fully elucidated. This study evaluated the therapeutic effects of stereotaxic injection of hADSCs in the striatum of the 6-OHDA-induced mouse model. Furthermore, an in vitro PD model was constructed using tissue-organized brain slices. The therapeutic effect was also evaluated using a co-culture of the hADSCs and 6-OHDA-treated brain slice. The analysis of hADSC exocrine proteins using RNA-sequencing, human protein cytokine arrays, and label-free quantitative proteomics identified key extracellular factors in the hADSC secretion environment. The degeneration and apoptosis of the dopaminergic neurons were measured in the PD samples in vivo and in vitro, and the beneficial effects were evaluated using quantitative reverse transcription-polymerase chain reaction, western blotting, Fluoro-Jade C, TUNEL assay, and immunofluorescence analysis. This study found that hADSCs protected the dopaminergic neurons in the in vivo and vitro models. We identified Pentraxin 3 (PTX3) as a key extracellular factor in the hADSC secretion environment. Moreover, we found that human recombinant PTX3 (rhPTX3) treatment could rescue the pathophysiological behavior of the PD mice in vivo, prevent dopaminergic neuronal death, and increase neuronal terminals in the ventral tegmental area + substantia nigra pars compacta and striatum in the PD brain slices in vitro. Furthermore, testing of the pro-apoptotic markers in the PD mouse brain following rhPTX3 treatment revealed that rhPTX3 can prevent apoptosis and degeneration of the dopaminergic neurons. This study discovered that PTX3, a hADSC-secreted protein, potentially protected the dopaminergic neurons against apoptosis and degeneration during PD progression and improved motor performance in PD mice, indicating the possible mechanism of action of hADSC replacement therapy for PD. Thus, our study discovered potential translational implications for the development of PTX3-based therapeutics for PD.


Subject(s)
Adipose Tissue/metabolism , Apoptosis/physiology , C-Reactive Protein/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mesenchymal Stem Cells/metabolism , Parkinson Disease/metabolism , Serum Amyloid P-Component/metabolism , Animals , Cell Death/physiology , Cells, Cultured , Corpus Striatum/metabolism , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL
7.
Cell Death Dis ; 11(5): 384, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439916

ABSTRACT

Temozolomide (TMZ) resistance is a major cause of recurrence and poor prognosis in glioblastoma (GBM). Recently, increasing evidences suggested that long noncoding RNAs (LncRNAs) modulate GBM biological processes, especially in resistance to chemotherapy, but their role in TMZ chemoresistance has not been fully illuminated. Here, we found that LncRNA SOX2OT was increased in TMZ-resistant cells and recurrent GBM patient samples, and abnormal expression was correlated with high risk of relapse and poor prognosis. Knockdown of SOX2OT suppressed cell proliferation, facilitated cell apoptosis, and enhanced TMZ sensitivity. In addition, we identified that SOX2OT regulated TMZ sensitivity by increasing SOX2 expression and further activating the Wnt5a/ß-catenin signaling pathway in vitro and in vivo. Mechanistically, further investigation revealed that SOX2OT recruited ALKBH5, which binds with SOX2, demethylating the SOX2 transcript, leading to enhanced SOX2 expression. Together, these results demonstrated that LncRNA SOX2OT inhibited cell apoptosis, promoted cell proliferation, and TMZ resistance by upregulating SOX2 expression, which activated the Wnt5a/ß-catenin signaling pathway. Our findings indicate that LncRNA SOX2OT may serve as a novel biomarker for GBM prognosis and act as a therapeutic target for TMZ treatment.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma , RNA, Long Noncoding/genetics , Temozolomide/pharmacology , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Epigenesis, Genetic/drug effects , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , RNA, Long Noncoding/drug effects , Signal Transduction/drug effects
8.
Cell Death Dis ; 9(12): 1139, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30442884

ABSTRACT

Temozolomide (TMZ) and radiation therapy combination for glioblastoma (GB) patients has been considered as the most effective therapy after surgical procedure. However, the overall clinical prognosis remains unsatisfactory due to intrinsic or developing resistance to TMZ. Recently, increasing evidence suggested that long noncoding RNAs (lncRNAs) play a critical role in various biological processes of tumors, and have been implicated in resistance to various drugs. However, the role of lncRNAs in TMZ resistance is poorly understood. Here, we found that the expression of lncRNA AC003092.1 was markedly decreased in TMZ resistance (TR) of GB cells (U87TR and U251TR) compared with their parental cells (U87 and U251). In patients with glioma, low levels of lncRNA AC003092.1 were correlated with increased TMZ resistance, higher risk of relapse, and poor prognosis. Overexpression of lncRNA AC003092.1 enhances TMZ sensitivity, facilitates cell apoptosis, and inhibits cell proliferation in TMZ-resistant GB cells. In addition, we identified that lncRNA AC003092.1 regulates TMZ chemosensitivity through TFPI-2-mediated cell apoptosis in vitro and in vivo. Mechanistically, further investigation revealed that lncRNA AC003092.1 regulates TFPI-2 expression through miR-195 in GB. Taken together, these data suggest that lncRNA AC003092.1 could inhibit the function of miR-195 by acting as an endogenous CeRNA, leading to increased expression of TFPI-2; this promotes TMZ-induced apoptosis, thereby making GB cells more sensitive to TMZ. Our findings indicate that overexpression of lncRNA AC003092.1 may be a potential therapy to overcome TMZ resistance in GB patients.


Subject(s)
Glioblastoma/drug therapy , Glycoproteins/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Aged , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , Middle Aged , Signal Transduction/drug effects , Temozolomide/administration & dosage , Temozolomide/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...