Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Biomed Pharmacother ; 177: 117008, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901196

ABSTRACT

Astragaloside IV (AS-IV) exhibits diverse biological activities. Despite this, the detailed molecular mechanisms by which AS-IV ameliorates diabetic nephropathy (DN) and shields podocytes from oxidative stress (OS) and mitochondrial dysfunction remain poorly understood. In this study, we used biochemical assays, histopathological analysis, Doppler ultrasound, transmission electron microscopy,flow cytometry, fluorescence staining, and Western blotting and other methods. AS-IV was administered to db/db mice for in vivo experimentation. Our findings indicated that AS-IV treatment significantly reduced diabetes-associated markers, proteinuria, and kidney damage. It also diminished ROS levels in the kidney, enhanced the expression of endogenous antioxidant enzymes, and improved mitochondrial health. Phenyl sulfate (PS), a protein-bound uremic solute of enteric origin, has been closely linked with DN and represents a promising avenue for further research. In vitro, PS exposure induced OS and mitochondrial dysfunction in podocytes, increasing ROS levels while decreasing antioxidant enzyme activity (Catalase, Heme Oxygenase-1, Superoxide Dismutase, and Glutathione Peroxidase). ROS inhibitors (N-acetyl-L-cysteine, NAC) as the positive control group can significantly reduce the levels of ROS and restore antioxidant enzymes protein levels. Additionally, PS reduced markers associated with mitochondrial biosynthesis and function (SIRT1, PGC1α, Nrf1, and TFAM). These adverse effects were partially reversed by AS-IV treatment. However, co-treatment with AS-IV and the SIRT1 inhibitor EX527 failed to restore these indicators. Overall, our study demonstrates that AS-IV effectively attenuates DN and mitigates PS-induced OS and mitochondrial dysfunction in podocytes via the SIRT1/PGC1α/Nrf1 pathway.


Subject(s)
Mitochondria , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Podocytes , Saponins , Signal Transduction , Sirtuin 1 , Triterpenes , Animals , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Sirtuin 1/metabolism , Oxidative Stress/drug effects , Saponins/pharmacology , Signal Transduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mice , Triterpenes/pharmacology , Male , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Nuclear Respiratory Factor 1/metabolism , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , NF-E2-Related Factor 1/metabolism
2.
World J Diabetes ; 15(5): 1021-1044, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38766424

ABSTRACT

BACKGROUND: Diabetes is a metabolic disease characterized by hyperglycemia, which has increased the global medical burden and is also the main cause of death in most countries. AIM: To understand the knowledge structure of global development status, research focus, and future trend of the relationship between diabetes and metabolomics in the past 20 years. METHODS: The articles about the relationship between diabetes and metabolomics in the Web of Science Core Collection were retrieved from 2002 to October 23, 2023, and the relevant information was analyzed using CiteSpace6.2.2R (CiteSpace), VOSviewer6.1.18 (VOSviewer), and Bibliometrix software under R language. RESULTS: A total of 3123 publications were included from 2002 to 2022. In the past two decades, the number of publications and citations in this field has continued to increase. The United States, China, Germany, the United Kingdom, and other relevant funds, institutions, and authors have significantly contributed to this field. Scientific Reports and PLoS One are the journals with the most publications and the most citations. Through keyword co-occurrence and cluster analysis, the closely related keywords are "insulin resistance", "risk", "obesity", "oxidative stress", "metabolomics", "metabolites" and "biomarkers". Keyword clustering included cardiovascular disease, gut microbiota, metabonomics, diabetic nephropathy, molecular docking, gestational diabetes mellitus, oxidative stress, and insulin resistance. Burst detection analysis of keyword depicted that "Gene", "microbiota", "validation", "kidney disease", "antioxidant activity", "untargeted metabolomics", "management", and "accumulation" are knowledge frontiers in recent years. CONCLUSION: The relationship between metabolomics and diabetes is receiving extensive attention. Diabetic nephropathy, diabetic cardiovascular disease, and kidney disease are key diseases for future research in this field. Gut microbiota, molecular docking, and untargeted metabolomics are key research directions in the future. Antioxidant activity, gene, validation, mass spectrometry, management, and accumulation are at the forefront of knowledge frontiers in this field.

3.
Zhongguo Zhong Yao Za Zhi ; 48(2): 525-533, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725242

ABSTRACT

This study aimed to investigate the recovery effect of Zuogui Jiangtang Qinggan Prescription on intestinal flora homeostasis control and intestinal mucosal barrier in type 2 diabetes mellitus(T2DM) with nonalcoholic fatty liver disease(NAFLD) induced by a high-fat diet. NAFLD was established in MKR transgenic mice(T2DM mice) by a high-fat diet(HFD), and subsequently treated for 8 weeks with Zuogui Jiangtang Qinggan Prescription(7.5, 15 g·kg~(-1)) and metformin(0.067 g·kg~(-1)). Triglyceride and liver function were assessed using serum. The hematoxylin-eosin(HE) staining and Masson staining were used to stain the liver tissue, while HE staining and AB-PAS staining were used to stain the intestine tissue. 16S rRNA sequencing was utilized to track the changes in the intestinal flora of the mice in each group. Polymerase chain reaction(PCR) and immunofluorescence were used to determine the protein and mRNA expression levels of ZO-1, Occludin, and Claudin-1. The results demonstrated that Zuogui Jiangtang Qinggan Prescription increased the body mass of T2DM mice with NAFLD and decreased the hepatic index. It down-regulated the serum biomarkers of liver function and dyslipidemia such as alanine aminotransferase(ALT), aspartate transaminase(AST), and triglycerides(TG), increased insulin sensitivity, and improved glucose tolerance. According to the results of 16S rRNA sequencing, the Zuogui Jiangtang Qinggan Prescription altered the composition and abundance of the intestinal flora, increasing the relative abundances of Muribaculaceae, Lactobacillaceae, Lactobacillus, Akkermansia, and Bacteroidota and decreasing the relative abundances of Lachnospiraceae, Firmicutes, Deslfobacteria, Proteobacteria, and Desulfovibrionaceae. According to the pathological examination of the intestinal mucosa, Zuogui Jiangtang Qinggan Prescritpion increased the expression levels of the tight junction proteins ZO-1, Occludin, and Claudin-1, promoted intestinal mucosa repair, protected intestinal villi, and increased the height of intestinal mucosa villi and the number of goblet cells. By enhancing intestinal mucosal barrier repair and controlling intestinal microbiota homeostasis, Zuogui Jiangtang Qinggan Prescription reduces intestinal mucosal damage induced by T2DM and NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Ribosomal, 16S , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Occludin/metabolism , Occludin/pharmacology , Claudin-1/metabolism , Intestinal Mucosa , Liver , Triglycerides/metabolism , Diet, High-Fat , Homeostasis , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...