Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Public Health ; 12: 1373044, 2024.
Article in English | MEDLINE | ID: mdl-38601492

ABSTRACT

Objectives: To investigate the causal relationships between pneumoconiosis and rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and gout. Methods: The random-effects inverse variance weighted (IVW) approach was utilized to explore the causal effects of the instrumental variables (IVs). Sensitivity analyses using the MR-Egger and weighted median (WM) methods were did to investigate horizontal pleiotropy. A leave-one-out analysis was used to avoid the bias resulting from single-nucleotide polymorphisms (SNPs). Results: There was no causal association between pneumoconiosis and SLE, RA or gout in the European population [OR = 1.01, 95% CI: 0.94-1.10, p = 0.74; OR = 1.00, 95% CI: 0.999-1.000, p = 0.50; OR = 1.00, 95% CI: 1.000-1.001, p = 0.55]. Causal relationships were also not found in pneumoconiosis due to asbestos and other mineral fibers and SLE, RA and gout [OR = 1.01, 95% CI: 0.96-1.07, p = 0.66; OR = 1.00, 95% CI: 1.00-1.00, p = 0.68; OR = 1.00, 95% CI: 1.00-1.00, p = 0.20]. Conclusion: Our study suggests that pneumoconiosis may have no causal relationship with the three inflammatory immune diseases.


Subject(s)
Gout , Immune System Diseases , Lupus Erythematosus, Systemic , Pneumoconiosis , Humans , Mendelian Randomization Analysis , Pneumoconiosis/epidemiology
2.
RMD Open ; 9(4)2023 11 30.
Article in English | MEDLINE | ID: mdl-38035758

ABSTRACT

OBJECTIVE: To investigate the relationship between metabolomic profiles, genome-wide polygenic risk scores (PRSs) and risk of rheumatoid arthritis (RA). METHODS: 143 nuclear magnetic resonance-based plasma metabolic biomarkers were measured among 93 800 participants in the UK Biobank. The Cox regression model was used to assess the associations between these metabolic biomarkers and RA risk, and genetic correlation and Mendelian randomisation analyses were performed to reveal their causal relationships. Subsequently, a metabolic risk score (MRS) comprised of the weighted sum of 17 clinically validated metabolic markers was constructed. A PRS was derived by assigning weights to genetic variants that exhibited significant associations with RA at a genome-wide level. RESULTS: A total of 620 incident RA cases were recorded during a median follow-up time of 8.2 years. We determined that 30 metabolic biomarkers were potentially associated with RA, while no further significant causal associations were found. Individuals in the top decile of MRS had an increased risk of RA (HR 3.52, 95% CI: 2.80 to 4.43) compared with those below the median of MRS. Further, significant gradient associations between MRS and RA risk were observed across genetic risk strata. Specifically, compared with the low genetic risk and favourable MRS group, the risk of incident RA in the high genetic risk and unfavourable MRS group has almost elevated by fivefold (HR 6.10, 95% CI: 4.06 to 9.14). CONCLUSION: Our findings suggested the metabolic profiles comprising multiple metabolic biomarkers contribute to capturing an elevated risk of RA, and the integration of genome-wide PRSs further improved risk stratification.


Subject(s)
Arthritis, Rheumatoid , Biological Specimen Banks , Humans , Cohort Studies , Risk Factors , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/genetics , Biomarkers , United Kingdom/epidemiology
3.
Environ Res ; 231(Pt 2): 116222, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224951

ABSTRACT

Endocrine-disrupting chemicals (EDCs) widely exist in people's production and life which have great potential to damage human and animal health. Over the past few decades, growing attention has been paid to the impact of EDCs on human health, as well as immune system. So far, researchers have proved that EDCs (such as bisphenol A (BPA), phthalate, tetrachlorodibenzodioxin (TCDD), etc.) affect human immune function and promotes the occurrence and development of autoimmune diseases (ADs). Therefore, in order to better understand how EDCs affect ADs, we summarized the current knowledge about the impact of EDCs on ADs, and elaborated the potential mechanism of the impact of EDCs on ADs in this review.


Subject(s)
Autoimmune Diseases , Endocrine Disruptors , Polychlorinated Dibenzodioxins , Animals , Humans , Endocrine Disruptors/toxicity , Autoimmune Diseases/chemically induced , Autoimmune Diseases/epidemiology , Immune System
4.
Biol Trace Elem Res ; 201(5): 2170-2182, 2023 May.
Article in English | MEDLINE | ID: mdl-35750995

ABSTRACT

The homeostasis of trace elements is essential to regulate different aspects of the immune system and might play important roles in systemic lupus erythematosus (SLE). However, epidemiological evidences that compared the level of essential trace elements in SLE patients and healthy controls (HCs) did not reach a consensus. This was the first meta-analysis to comprehensively assess the level of zinc (Zn), copper (Cu), iron (Fe), and selenium (Se) in SLE and HCs. PubMed, Embase, and Web of Science were systematically searched until April 2022 to find relevant literatures. The PRISMA statement 2020 was followed to make sure the quality of reporting a meta-analysis. The outcomes were assessed by pooled standardized mean difference (SMD) and 95% confidence intervals (CIs). Finally, eleven articles with 1262 subjects were included in the meta-analysis. Significantly lower levels of Zn (SMD = -0.709; 95% CI: -1.173, -0.245; P = 0.003) and Fe (SMD = -1.783; 95% CI: -2.756, -0.809; P = 0.000) were found in SLE compared with HCs. Higher levels of Cu (SMD = 0.808; 95% CI: 0.234, 1.382; P = 0.006) were found in SLE patients. In addition, compared with HCs, Fe and Zn were lower in SLE patients in Asia and Cu was higher in SLE patients in Europe. However, no significant difference was observed in the level of Se (SMD = -0.251; 95% CI: -1.087, 0.586; P = 0.557). Above all, SLE patients exhibited lower Zn and Fe and increased Cu concentrations compared with HCs. Further studies are warranted to investigate the mechanism of Zn, Cu, and Fe in SLE patients.


Subject(s)
Lupus Erythematosus, Systemic , Selenium , Trace Elements , Humans , Zinc , Copper , Case-Control Studies
5.
Autoimmun Rev ; 22(2): 103234, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36423833

ABSTRACT

Nearly 20 years of studies have shown that fungi and the human immune system (non-specific immunity and specific immunity) and bacterial--fungal interactions maintain a balance that can't lead to diseases. Fungi--microorganism that lives in human intestine--may play an important role in human health and disease. Population studies and animal models in some diseases have found the changes in the diversity and composition of fungi. The dysregulation of the fungi can disrupt the normal "running" of the immune system and bacteria, which triggers the development of inflammatory diseases. The latest studies of fungi in inflammatory bowel disease, systemic lupus erythematosus, ankylosing spondylitis and type 1 diabetes mellitus were summarized. This review considers how the healthy host protect against the potential harm of intestinal fungi through the immune system and how fungal dysregulation alters host immunity.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Spondylitis, Ankylosing , Animals , Humans , Intestines , Immunity, Innate , Bacteria , Fungi , Autoimmune Diseases/etiology
6.
Front Microbiol ; 13: 1031079, 2022.
Article in English | MEDLINE | ID: mdl-36545195

ABSTRACT

Objective: Gut fungi, as symbiosis with the human gastrointestinal tract, may regulate physiology via multiple interactions with host cells. The plausible role of fungi in systemic lupus erythematosus (SLE) is far from clear and need to be explored. Methods: A total of 64 subjects were recruited, including SLE, rheumatoid arthritis (RA), undifferentiated connective tissue diseases (UCTDs) patients and healthy controls (HCs). Fecal samples of subjects were collected. Gut fungi and bacteria were detected by ITS sequencing and 16S rRNA gene sequencing, respectively. Alpha and beta diversities of microbiota were analyzed. Linear discriminant analysis effect size analysis was performed to identify abundance of microbiota in different groups. The correlation network between bacterial and fungal microbiota was analyzed based on Spearman correlation. Results: Gut fungal diversity and community composition exhibited significant shifts in SLE compared with UCTDs, RA and HCs. Compared with HCs, the alpha and beta diversities of fungal microbiota decreased in SLE patients. According to principal coordinates analysis results, the constitution of fungal microbiota from SLE, RA, UCTDs patients and HCs exhibited distinct differences with a clear separation between fungal microbiota. There was dysbiosis in the compositions of fungal and bacterial microbiota in the SLE patients, compared to HCs. Pezizales, Cantharellales and Pseudaleuria were enriched in SLE compared with HCs, RA and UCTDs. There was a complex relationship network between bacterial and fungal microbiota, especially Candida which was related to a variety of bacteria. Conclusion: This study presents a pilot analysis of fungal microbiota with diversity and composition in SLE, and identifies several gut fungi with different abundance patterns taxa among SLE, RA, UCTDs and HCs. Furthermore, the gut bacterial-fungal association network in SLE patients was altered compared with HCs.

7.
Environ Sci Pollut Res Int ; 29(33): 49534-49552, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35595897

ABSTRACT

Immunoglobulin E (IgE)-mediated allergic diseases, including eczema, atopic dermatitis (AD), and allergic rhinitis (AR), have increased prevalence in recent decades. Recent studies have proved that environmental pollution might have correlations with IgE-mediated allergic diseases, but existing research findings were controversial. Thus, we performed a comprehensive meta-analysis from published observational studies to evaluate the risk of long-term and short-term exposure to air pollutants on eczema, AD, and AR in the population (per 10-µg/m3 increase in PM2.5 and PM10; per 1-ppb increase in SO2, NO2, CO, and O3). PubMed, Embase, and Web of Science were searched to identify qualified literatures. The Cochran Q test was used to assess heterogeneity and quantified with the I2 statistic. Pooled effects and the 95% confidence intervals (CIs) were used to evaluate outcome effects. A total of 55 articles were included in the study. The results showed that long-term and short-term exposure to PM10 increased the risk of eczema (PM10, RRlong = 1.583, 95% CI: 1.328, 1.888; RRshort = 1.006, 95% CI: 1.003-1.008) and short-term exposure to NO2 (RRshort = 1.009, 95% CI: 1.008-1.011) was associated with eczema. Short-term exposure to SO2 (RRshort: 1.008, 95% CI: 1.001-1.015) was associated with the risk of AD. For AR, PM2.5 (RRlong = 1.058, 95% CI: 1.014-1.222) was harmful in the long term, and short-term exposure to PM10 (RRshort: 1.028, 95% CI: 1.008-1.049) and NO2 (RRshort: 1.018, 95% CI: 1.007-1.029) were risk factors. The findings indicated that exposure to air pollutants might increase the risk of IgE-mediated allergic diseases. Further studies are warranted to illustrate the potential mechanism for air pollutants and allergic diseases.


Subject(s)
Air Pollutants , Air Pollution , Eczema , Environmental Pollutants , Rhinitis, Allergic , Air Pollutants/analysis , Air Pollution/analysis , Eczema/epidemiology , Environmental Exposure/analysis , Humans , Immunoglobulin E , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Rhinitis, Allergic/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...