Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Model ; 8(4): 1050-1062, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37706095

ABSTRACT

Background: A COVID-19 outbreak in the rural areas of Shijiazhuang City was attributed to the complex interactions among vaccination, host, and non-pharmaceutical interventions (NPIs). Herein, we investigated the epidemiological characteristics of all reported symptomatic cases by picking Shijiazhuang City, Hebei Province in Northern China as research objective. In addition, we established a with age-group mathematical model to perform the optimal fitting and to investigate the dynamical profiles under three scenarios. Methods: All reported symptomatic cases of Shijiazhuang epidemic (January 2-February 3, 2021) were investigated in our study. The cases were classified by gender, age group and location, the distributions were analyzed by epidemiological characteristics. Furthermore, the reported data from Health Commission of Hebei Province was also analyzed by using an age-group mathematical model by two phases and three scenarios. Results: Shijiazhuang epidemic caused by SARS-CoV-2 wild strain was recorded with the peak 84 cases out of 868 reported symptomatic cases on January 11, 2021, which was implemented with strong NPIs by local government and referred as baseline situation in this study. The research results showed that R0 under baseline situation ranged from 4.47 to 7.72, and Rt of Gaocheng Distinct took 3.72 with 95% confidence interval from 3.23 to 4.35 on January 9, the declining tendencies of Rt under baseline situation were kept till February 3, the value of Rt reached below 1 on January 19 and remained low value up to February 3 for Gaocheng District and Shijiazhuang City during Shijiazhuang epidemic. This indicated Shijiazhuang epidemic was under control on January 19. However, if the strong NPIs were kept, but remote isolation operated on January 11 was not implemented as of February 9, then the scale of Shijiazhuang epidemic reached 9482 cases from age group who were 60 years old and over out of 31,017 symptomatic cases. The investigation also revealed that Shijiazhuang epidemic reached 132,648 symptomatic cases for age group who were 60 years old and over (short for G2) under risk-based strategies (Scenario A), 58,048 symptomatic cases for G2 under late quarantine strategies (Scenario B) and 207,124 symptomatic cases for G2 under late quarantine double risk strategies (Scenario C), and that the corresponding transmission tendencies of Rt for three scenarios were consistently controlled on Jan 29, 2021. Compared with baseline situation, the dates for controlling Rt below 1 under three scenarios were delayed 10 days. Conclusions: Shijiazhuang epidemic was the first COVID-19 outbreak in the rural areas in Hebei Province of Northern China. The targeted interventions adopted in early 2021 were effective to halt the transmission due to the implementation of a strict and village-wide closure. However we found that age group profile and NPIs played critical rules to successfully contain Shijiazhuang epidemic, which should be considered by public health policies in rural areas of mainland China during the dynamic zero-COVID policy.

2.
J Biosaf Biosecur ; 5(1): 39-44, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36992708

ABSTRACT

The prediction system EpiSIX was used to study the COVID-19 epidemic in mainland China between November 2022 and January 2023, based on reported data from December 9, 2022, to January 30, 2023, released by The Chinese Center for Disease Control and Prevention on February 1, 2023. Three kinds of reported data were used for model fitting: the daily numbers of positive nucleic acid tests and deaths, and the daily number of hospital beds taken by COVID-19 patients. It was estimated that the overall infection rate was 87.54% and the overall case fatality rate was 0.078%-0.116% (median 0.100%). Assuming that a new COVID-19 epidemic outbreak would start in March or April of 2023, induced by a slightly more infectious mutant strain, we predicted a possible large rebound between September and October 2023, with a peak demand of between 800,000 and 900,000 inpatient beds. If no such new outbreak was induced by other variants, then the current COVID-19 epidemic course in mainland China would remain under control until the end of 2023. However, it is suggested that the necessary medical resources be prepared to manage possible COVID-19 epidemic emergencies in the near future, especially for the period between September and October 2023.

3.
J Biosaf Biosecur ; 4(2): 158-162, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36573222

ABSTRACT

The World Health Organization (WHO) declared monkeypox as a public health emergency of international concern (PHEIC) on July 23, 2022, their highest level of alert. This raised concerns about the management of the global monkeypox outbreak, as well as the scientific analysis and accurate prediction of the future course of the epidemic. This study used EpiSIX (an analysis and prediction system for epidemics based on a general SEIR model) to analyze the monkeypox epidemic and to forecast the major tendencies based on data from the USA CDC (https://www.cdc.gov) and the WHO (https://www.who.int/health-topics/monkeypox). The global outbreak of monkeypox started in the UK on May 2, 2022, which marked the beginning of an epidemic wave. As of October 28, 2022, the cumulative number of reported cases worldwide was 77,115, with 36 deaths. EpiSIX simulations predict that the global monkeypox epidemic will enter a low epidemic status on March 1, 2023 with the cumulative number of confirmed cases ranging from 85,000 to 124,000, and the total number of deaths ranging from 60 to 87. Our analysis revealed that the basic reproduction number (R0) of monkeypox virus (MPXV) is near to 3.1 and the percentage of asymptomatic individuals is 13.1 %-14.5 %, both of which are similar to the data for SARS. The vaccination efficiency against susceptibility (VEs) of individuals who have had monkeypox is âˆ¼ 79 %, and the vaccination efficiency against infectiousness (VEi) of individuals who have had monkeypox is âˆ¼ 76 %-82 %. The mean incubation period for monkeypox is 8 days. In total, 94.7 % of infected individuals develop symptoms within 20 days and recover within 2 weeks after the confirmation of symptoms. Simulation results using EpiSIX showed that ring vaccination was remarkably effective against monkeypox. Our findings confirmed that a 20-day isolation for close contacts is necessary.

4.
Math Biosci ; 215(1): 84-104, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18621064

ABSTRACT

We present a novel SEIR (susceptible-exposure-infective-recovered) model that is suitable for modeling the eradication of diseases by mass vaccination or control of diseases by case isolation combined with contact tracing, incorporating the vaccine efficacy or the control efficacy into the model. Moreover, relying on this novel SEIR model and some probabilistic arguments, we have found four formulas that are suitable for estimating the basic reproductive numbers R(0) in terms of the ratio of the mean infectious period to the mean latent period of a disease. The ranges of R(0) for most known diseases, that are calculated by our formulas, coincide very well with the values of R(0) estimated by the usual method of fitting the models to observed data.


Subject(s)
Communicable Diseases/epidemiology , Disease Outbreaks/statistics & numerical data , Models, Biological , Communicable Disease Control , Humans , Mathematics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...