Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38315592

ABSTRACT

We propose two novel transferability metrics fast optimal transport-based conditional entropy (F-OTCE) and joint correspondence OTCE (JC-OTCE) to evaluate how much the source model (task) can benefit the learning of the target task and to learn more generalizable representations for cross-domain cross-task transfer learning. Unlike the original OTCE metric that requires evaluating the empirical transferability on auxiliary tasks, our metrics are auxiliary-free such that they can be computed much more efficiently. Specifically, F-OTCE estimates transferability by first solving an optimal transport (OT) problem between source and target distributions and then uses the optimal coupling to compute the negative conditional entropy (NCE) between the source and target labels. It can also serve as an objective function to enhance downstream transfer learning tasks including model finetuning and domain generalization (DG). Meanwhile, JC-OTCE improves the transferability accuracy of F-OTCE by including label distances in the OT problem, though it incurs additional computation costs. Extensive experiments demonstrate that F-OTCE and JC-OTCE outperform state-of-the-art auxiliary-free metrics by 21.1% and 25.8% , respectively, in correlation coefficient with the ground-truth transfer accuracy. By eliminating the training cost of auxiliary tasks, the two metrics reduce the total computation time of the previous method from 43 min to 9.32 and 10.78 s, respectively, for a pair of tasks. When applied in the model finetuning and DG tasks, F-OTCE shows significant improvements in the transfer accuracy in few-shot classification experiments, with up to 4.41% and 2.34% accuracy gains, respectively.

2.
Entropy (Basel) ; 25(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37895555

ABSTRACT

Distributed hypothesis testing (DHT) has emerged as a significant research area, but the information-theoretic optimality of coding strategies is often typically hard to address. This paper studies the DHT problems under the type-based setting, which is requested from the popular federated learning methods. Specifically, two communication models are considered: (i) DHT problem over noiseless channels, where each node observes i.i.d. samples and sends a one-dimensional statistic of observed samples to the decision center for decision making; and (ii) DHT problem over AWGN channels, where the distributed nodes are restricted to transmit functions of the empirical distributions of the observed data sequences due to practical computational constraints. For both of these problems, we present the optimal error exponent by providing both the achievability and converse results. In addition, we offer corresponding coding strategies and decision rules. Our results not only offer coding guidance for distributed systems, but also have the potential to be applied to more complex problems, enhancing the understanding and application of DHT in various domains.

3.
Entropy (Basel) ; 24(1)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35052161

ABSTRACT

With the unprecedented performance achieved by deep learning, it is commonly believed that deep neural networks (DNNs) attempt to extract informative features for learning tasks. To formalize this intuition, we apply the local information geometric analysis and establish an information-theoretic framework for feature selection, which demonstrates the information-theoretic optimality of DNN features. Moreover, we conduct a quantitative analysis to characterize the impact of network structure on the feature extraction process of DNNs. Our investigation naturally leads to a performance metric for evaluating the effectiveness of extracted features, called the H-score, which illustrates the connection between the practical training process of DNNs and the information-theoretic framework. Finally, we validate our theoretical results by experimental designs on synthesized data and the ImageNet dataset.

4.
Entropy (Basel) ; 23(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401691

ABSTRACT

In this paper, we study the phase transition property of an Ising model defined on a special random graph-the stochastic block model (SBM). Based on the Ising model, we propose a stochastic estimator to achieve the exact recovery for the SBM. The stochastic algorithm can be transformed into an optimization problem, which includes the special case of maximum likelihood and maximum modularity. Additionally, we give an unbiased convergent estimator for the model parameters of the SBM, which can be computed in constant time. Finally, we use metropolis sampling to realize the stochastic estimator and verify the phase transition phenomenon thfough experiments.

5.
Sensors (Basel) ; 18(2)2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29470406

ABSTRACT

The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.

SELECTION OF CITATIONS
SEARCH DETAIL
...