Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
CNS Neurosci Ther ; 30(4): e14718, 2024 04.
Article in English | MEDLINE | ID: mdl-38615366

ABSTRACT

AIMS: Classification of spinal muscular atrophy (SMA) is associated with the clinical prognosis; however, objective classification markers are scarce. This study aimed to identify metabolic markers in the cerebrospinal fluid (CSF) of children with SMA types II and III. METHODS: CSF samples were collected from 40 patients with SMA (27 with type II and 13 with type III) and analyzed for metabolites. RESULTS: We identified 135 metabolites associated with SMA types II and III. These were associated with lysine degradation and arginine, proline, and tyrosine metabolism. We identified seven metabolites associated with the Hammersmith Functional Motor Scale: 4-chlorophenylacetic acid, adb-chminaca,(+/-)-, dodecyl benzenesulfonic acid, norethindrone acetate, 4-(undecan-5-yl) benzene-1-sulfonic acid, dihydromaleimide beta-d-glucoside, and cinobufagin. Potential typing biomarkers, N-cyclohexylformamide, cinobufagin, cotinine glucuronide, N-myristoyl arginine, 4-chlorophenylacetic acid, geranic acid, 4-(undecan-5-yl) benzene, and 7,8-diamino pelargonate, showed good predictive performance. Among these, N-myristoyl arginine was unaffected by the gene phenotype. CONCLUSION: This study identified metabolic markers are promising candidate prognostic factors for SMA. We also identified the metabolic pathways associated with the severity of SMA. These assessments can help predict the outcomes of screening SMA classification biomarkers.


Subject(s)
Phenylacetates , Spinal Muscular Atrophies of Childhood , Child , Humans , Benzene , Metabolomics , Arginine
2.
Mol Neurobiol ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602656

ABSTRACT

Epilepsy is a chronic neurological disorder characterized by recurrent seizures. Despite various treatment approaches, a significant number of patients continue to experience uncontrolled seizures, leading to refractory epilepsy. The emergence of novel anti-epileptic drugs, such as perampanel (PER), has provided promising options for effective epilepsy treatment. However, the specific mechanisms underlying the therapeutic effects of PER remain unclear. This study aimed to investigate the intrinsic molecular regulatory mechanisms involved in the downregulation of GluA2, a key subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, following epileptic seizures. Primary mouse hippocampal neurons were cultured and subjected to an epilepsy cell model. The expression levels of GluA2 and autophagy-related proteins were assessed using Western blotting and real-time fluorescent quantitative PCR. Immunofluorescence and immunohistochemistry techniques were employed to investigate the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Additionally, status epilepticus animal models were established to further validate the findings. The epilepsy cell model exhibited a significant decrease in GluA2 expression, accompanied by elevated levels of autophagy-related proteins. Immunofluorescence analysis revealed the nuclear translocation of CRTC1, which correlated with the expression of autophagy-related genes. Treatment with an autophagy inhibitor reversed the decreased expression of GluA2 in the epilepsy cell model. Furthermore, the calcium/calmodulin-dependent protein phosphatase inhibitor FK506 and CaN overexpression affected the dephosphorylation and nuclear translocation of CRTC1, consequently influencing GluA2 expression. Animal model results further supported the involvement of these molecular mechanisms in epilepsy. Our findings suggest that the downregulation of GluA2 following epileptic seizures involves the activation of autophagy and the regulation of CRTC1 nuclear translocation. These intrinsic molecular regulatory mechanisms provide potential targets for developing novel therapeutic strategies to alleviate refractory epilepsy and preserve cognitive functions in patients.

3.
Drug Des Devel Ther ; 18: 953-965, 2024.
Article in English | MEDLINE | ID: mdl-38562520

ABSTRACT

Objective: This study aimed to observe the neurophysiological characteristics of type II and type III 5q spinal muscular atrophy (SMA) patients and the changes in peripheral motor nerve electrophysiology after Nusinersen treatment, as well as the influencing factors. Methods: This single-center retrospective case-control study collected clinical data and peripheral motor nerve CMAP parameters from 42 5qSMA patients and 42 healthy controls at the Second Affiliated Hospital of Xi'an Jiaotong University (January 2021 to December 2022). It evaluated changes in motor function and CMAP amplitude before and after Nusinersen treatment. Results: Our investigation encompassed all symptomatic and genetically confirmed SMA patients, consisting of 32 type II and 10 type III cases, with a median age of 57 months (29.5 to 96 months). Comparative analysis with healthy controls revealed substantial reductions in CMAP amplitudes across various nerves in both type II and type III patients. Despite the administration of Nusinersen treatment for 6 or 14 months to the entire cohort, discernible alterations in motor nerve amplitudes were not observed, except for a significant improvement in younger patients (≤36 months) at the 14-month mark. Further scrutiny within the type II subgroup unveiled that individuals with a disease duration ≤12 months experienced a noteworthy upswing in femoral nerve amplitude, a statistically significant difference when compared to those with >12 months of disease duration. Conclusion: Motor nerve amplitudes were significantly decreased in type II and type III 5q SMA patients compared to healthy controls. Nusinersen treatment showed better improvement in motor nerve amplitudes in younger age groups and those with shorter disease duration, indicating a treatment-time dependence.


Subject(s)
Spinal Muscular Atrophies of Childhood , Humans , Child, Preschool , Retrospective Studies , Case-Control Studies , Spinal Muscular Atrophies of Childhood/drug therapy , Oligonucleotides/therapeutic use
4.
Seizure ; 117: 105-110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367318

ABSTRACT

PURPOSE: To draw clinical attention to rashes caused by lacosamide. METHODS: This retrospective analysis included patients admitted to the Department of Pediatrics, Second Affiliated Hospital of Xi'an Jiaotong University between January 2021 and September 2023. We focused on patients who developed rashes after lacosamide treatment and analyzed all patients who exhibited rashes after lacosamide treatment to analyze the risk factors. RESULTS: In total, 190 patients received lacosamide, of whom four developed allergies (2.1 %). Three patients had severe rashes, and two patients had high fever. All of these adverse events improved after the withdrawal of lacosamide. Of the 13 patients reported to date, including the four patients in this study, eight used various antiseizure medicines, including seven patients who used four or more antiseizure medicines. Four patients underwent testing for HLA-B*1502, and two patients were positive. Patients developed rashes within 1-10 days after treatment initiation, and the duration of the rash ranged 2-37 days. CONCLUSIONS: Lacosamide-induced rash was detected in 2.1 % of patients in our cohort. Rashes are potentially serious, and prompt evaluation is required. Rashes are more likely to occur when multiple antiseizure medicines are used simultaneously, typically within 10 days of treatment initiation.


Subject(s)
Anticonvulsants , Epilepsy , Exanthema , Lacosamide , Humans , Lacosamide/adverse effects , Anticonvulsants/adverse effects , Male , Female , Retrospective Studies , Exanthema/chemically induced , Child , Child, Preschool , Epilepsy/drug therapy , Adolescent , Infant
5.
Neurochirurgie ; 69(6): 101500, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742915

ABSTRACT

BACKGROUND: To explore a novel scoring system to evaluate the efficacy of vagus nerve stimulation (VNS) in children with drug-resistant generalized epilepsy (DRGE) aged six and younger. BASIC PROCEDURES: The data of twelve children with DRGE under the age of 6 years who accepted VNS and have been followed up for at least 3 years were retrospectively reviewed. The outcome was evaluated with the McHugh Classification System and a novel scoring system we proposed. MAIN FINDINGS: Based on the McHugh Classification System, the total response rate was 91.67% (11/12) and the rate of Grade I was 41.67% (5/12). A novel scoring system involving seizure frequency, seizure duration and quality of life (QOL) was proposed, by which the outcome was scored from -3 to 11 and graded from IV to I. Based on the novel scoring system, the total response rate was 91.67% (11/12) and the rate of Grade I was 33.33% (4/12). The incidence of complication was 16.67% (2/12). The efficacy of VNS appeared a gradually improving trend with plateau or fluctuation over time. Shorter course of epilepsy prior to VNS may be related to better outcome. PRINCIPAL CONCLUSIONS: VNS could effectively reduce the seizure frequency and improve the QOL of children with DRGE aged six and younger. The novel scoring system was comprehensive and feasible to evaluate the efficacy of VNS. The time pattern of the long-term efficacy of VNS requires further investigation.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Generalized , Vagus Nerve Stimulation , Child , Humans , Quality of Life , Retrospective Studies , Drug Resistant Epilepsy/therapy , Seizures , Epilepsy, Generalized/therapy , Treatment Outcome
6.
Front Pediatr ; 11: 1239322, 2023.
Article in English | MEDLINE | ID: mdl-37675391

ABSTRACT

Objective: To study the changes in epileptic seizures and sleep quality in children with epilepsy (CWE) and the changes in anxiety of their caregivers after infection with COVID-19. Methods: Outpatients and inpatients of CWEs were selected as subjects and a questionnaire survey was used to carry out this case-series study. The demographic information of the CWEs and their caregivers, information about epilepsy, and information about the vaccination, infection, and treatment of COVID-19 were collected. The changes in sleep quality of CWEs and the changes in anxiety of their caregivers were assessed by the Child Sleep Habits Questionnaire (CSHQ) and Caregiver Anxiety Scale (CAS). Risk factors affecting sleep habits in CWEs and caregiver anxiety were further analyzed by one-way analysis of variance. Results: A total of 312 children were included in the study. Among them, 134 patients (42.9%) were female. The average age of the children was 9.30 ± 3.88 years, and the duration of epilepsy was 4.59 ± 3.36 years. A total of 221 of the 312 children were infected with COVID-19, and all the infected children developed fever, which lasted for 1.71 ± 1.13 days. 10 children were satisfied with controlled seizures for more than 1 year and relapsed after COVID-19 infection (4.2%), 4 cases (3.6%) with increased seizures, and 8 children with reduced seizures (7.7%), 17 children (7.7%) had no change in seizures, and 182 children (82.3%) remained seizure-free after the COVID-19 infection. The average sleep time of the CWEs was 9.25 ± 1.04 h and the average total score of the CSHQ was 37.25 ± 5.19, among which 44 cases (14.1%) had more than 41 points. As the result of the CAS, 16 of them (5.13%) scored above 50 and the average total score was 31.49 ± 8.09. The control of seizures, age of onset, types of anti-seizure medicines (ASMs), and seizure duration were risk factors affecting sleep quality. Accordingly, the score of CAS was significantly lower when there was more than one caregiver who cared for the CWE. Conclusions: COVID-19 infection did not cause an increase in seizures in CWEs, nor did it worsen their sleep quality of them or aggravate the anxiety of their caregivers.

7.
Nutrition ; 110: 111976, 2023 06.
Article in English | MEDLINE | ID: mdl-37060636

ABSTRACT

OBJECTIVE: The ketogenic diet (KD) is one of the main treatments for drug-resistant epilepsy. However, there have been few multicenter reports on the use of the KD for the treatment of Dravet syndrome (DS). The aim of this study was to analyze the efficacy and safety of this approach based on a large number of multicenter cases. METHODS: This was a retrospective, multicenter cohort study from 14 centers in China. All patients were treated with the KD. We compared the effects of KD intervention time, age, and other factors. RESULTS: From March 2014 to March 2020, we treated 114 patients with DS with the KD. The male-to-female ratio was 67:47. The KD median initiation age was 3 y and 4 mo, and the median number of antiseizure medications (ASMs) was 2.4. KD therapy was the first choice for three patients. Exactly 10.5% of the patients started KD therapy after failure of the first ASM therapy, with 35.1% after failure of the second, 44.7% after the third, and 7% after the fourth or more. After KD therapy for 1, 3, 6, and 12 mo, the seizure-free rates were 14%, 32.5%, 30.7%, and 19.3%, respectively; KD efficacy (≥50% reduction in seizure frequency) were 57.9%, 76.3%, 59.6%, and 43%, respectively; the retention rates were 97.4%, 93%, 71.9%, and 46.5%, respectively; and the rates of adverse events were 25.2%, 19.9%, 11%, and 5.7%, respectively. CONCLUSIONS: Real-world, multicenter data analysis showed that the KD is effective for patients with DS and has a low incidence of side effects.


Subject(s)
Diet, Ketogenic , Drug Resistant Epilepsy , Epilepsies, Myoclonic , Humans , Male , Female , Diet, Ketogenic/adverse effects , Retrospective Studies , Cohort Studies , Treatment Outcome , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/epidemiology
8.
BMC Neurol ; 23(1): 35, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36690929

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a progressive degenerative neuromuscular disease. Nusinersen, with its quick onset of action, can benefit patients early in the treatment course. However, there are currently no clinical studies regarding the improvement in motor function and nutritional status of patients after loading period treatment with nusinersen. Here, we aimed to determine the efficacy of nusinersen in improving motor function and nutritional status in children with SMA treated with nusinersen after loading period in Western China. METHODS: In this retrospective study, data for all pediatric patients (aged < 18 years), with genetically confirmed diagnosis of SMA who were treated with nusinersen, were collected before initiation of treatment and after 2 months of treatment. We assessed motor function using standardized scales and nutritional status of patients with SMA as well as side effects of nusinersen. RESULTS: Forty-six pediatric patients aged < 18 years were enrolled in this study. After 2 months of treatment, the motor function of patients with SMA type 1, 2, and 3 improved. The difference in Revised Upper Limb Module scores from M0 to M2 was significant in patients with SMA type 2 and 3 (P = 0.004, P = 0.042, respectively). The difference in Hammersmith Functional Motor Scale Expanded scores from M0 to M2 in patients with SMA type 2 was also significant (P = 0.000). No significant differences were found for Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorder (CHOP-INTEND), Hammersmith Infant Neurologic Examination-Part 2 (HINE-2), and 6-Minute Walking Test (6MWT) scores between M0 and M2, but the scores of CHOP-INTEND, HINE-2, and 6MWT were all increased after loading period treatment. The overall improvement in nutritional status was not statistically significant. No serious adverse effects were observed. CONCLUSIONS: Our study provides evidence for the efficacy and safety of nusinersen and the nutritional status of pediatric patients with SMA after the loading period treatment. Motor function of all patients improved after 2 months of loading period nusinersen treatment. Patients with a shorter disease duration showed better response to treatment. Careful surveillance of nutritional status is needed in patients with SMA.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Infant , Child , Humans , Retrospective Studies , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , China
9.
J Mol Diagn ; 25(2): 110-120, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36410626

ABSTRACT

Primary spontaneous pneumothorax (PSP) or pulmonary cyst is one of the manifestations of Birt-Hogg-Dubé syndrome, which is caused by pathogenic variants in FLCN gene. Genetic testing in patients with PSP identifies a certain number of missense or intronic variants. These variants are usually considered as variants of uncertain significance, whose functional interpretations pose a challenge in clinical genetics. To improve recognition of pathogenic splice-altering variants in FLCN gene, computational tools are used to prioritize potential splice-altering variants and then a hybrid minigene assay is performed to verify the RNA splicing pattern. Herein, variants in FLCN exon 11 and its flanking sequence are focused. Eight variants detected in 11 patients with PSP are evaluated, and six variants are prioritized by in silico tools as potential splice-altering variants of uncertain significance. Four variants (c.1177-5_1177-3delCTC, c.1292_1300+4del, c.1300+4C>T, and c.1300+5G>A) are demonstrated by minigene assay to alter RNA splicing of FLCN, and the last three of them are novel. RT-PCR of patient-derived RNA gives consistent results. Genotype-phenotype correlation analysis in patients with PSP with these variants demonstrates good concordance. Our results underline the importance of RNA analysis, which could provide molecular evidence for pathogenicity of a variant, and provide essential information for the clinical interpretation of variants. Combining the clinical information, a definitive diagnosis could be made.


Subject(s)
Pathology, Molecular , Tumor Suppressor Proteins , Genes, Tumor Suppressor , RNA , Tumor Suppressor Proteins/genetics , Virulence , Humans
10.
Biosensors (Basel) ; 12(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36354452

ABSTRACT

Advancements in robotic surgery help to improve the endoluminal diagnosis and treatment with minimally invasive or non-invasive intervention in a precise and safe manner. Miniaturized probe-based sensors can be used to obtain information about endoluminal anatomy, and they can be integrated with medical robots to augment the convenience of robotic operations. The tremendous benefit of having this physiological information during the intervention has led to the development of a variety of in vivo sensing technologies over the past decades. In this paper, we review the probe-based sensing techniques for the in vivo physical and biochemical sensing in China in recent years, especially on in vivo force sensing, temperature sensing, optical coherence tomography/photoacoustic/ultrasound imaging, chemical sensing, and biomarker sensing.


Subject(s)
Robotic Surgical Procedures , Robotic Surgical Procedures/methods , China
11.
Front Neurol ; 13: 924057, 2022.
Article in English | MEDLINE | ID: mdl-35968281

ABSTRACT

Objective: To observe the clinical effect and adverse reactions of perampanel in the treatment of epilepsy in children. Methods: A retrospective analysis was performed on 83 children with epilepsy who were treated with perampanel in the Department of Pediatric Neurology, Second Affiliated Hospital of Xi'an Jiaotong University from April to August 2021. The treatment status, prognosis and adverse reactions were followed up. The effective rates of different age groups, different seizure types and epilepsy syndromes, and different treatment methods were statistically analyzed. The effective rate and adverse reactions of all patients were statistically analyzed. Results: The overall effective rate of perampanel in the treatment of epilepsy was 62.03%, and there was no significant difference in the effective rate of perampanel in the treatment of epilepsy in patients of different ages (P > 0.05). The effective rates of perampanel in the treatment of focal seizures and generalized seizures were 60.38% and 65.38%, and the effective rates of benign childhood epilepsy with centrotemporal spikes (BECT), BECT combined with electrical status epilepticus during sleep (ESES) and frontal lobe epilepsy (FLE) were 88.89, 72.73, and 66.67%. The effective rates of monotherapy and combination therapy were 88.88 and 58.57%, respectively. The above statistical differences were not statistically significant (P > 0.05). In addition, the adverse reaction rate of perampanel treatment was 16.45%, including irritability, drowsiness, dizziness, nausea, vomiting and abnormal liver function. Conclusion: Perampanel has a high efficiency and controllable adverse reactions in the treatment of childhood epilepsy. This drug can be used as a reliable choice for long-term use in the treatment of epilepsy in children.

12.
Environ Chem Lett ; 20(5): 2951-2970, 2022.
Article in English | MEDLINE | ID: mdl-35791338

ABSTRACT

During the Corona Virus Disease 2019 (COVID-19) pandemic, protective equipment, such as masks, gloves and shields, has become mandatory to prevent person-to-person transmission of coronavirus. However, the excessive use and abandoned protective equipment is aggravating the world's growing plastic problem. Moreover, above protective equipment can eventually break down into microplastics and enter the environment. Here we review the threat of protective equipment associated plastic and microplastic wastes to environments, animals and human health, and reveal the protective equipment associated microplastic cycle. The major points are the following:1) COVID-19 protective equipment is the emerging source of plastic and microplastic wastes in the environment. 2) protective equipment associated plastic and microplastic wastes are polluting aquatic, terrestrial, and atmospheric environments. 3) Discarded protective equipment can harm animals by entrapment, entanglement and ingestion, and derived microplastics can also cause adverse implications on animals and human health. 4) We also provide several recommendations and future research priority for the sustainable environment. Therefore, much importance should be attached to potential protective equipment associated plastic and microplastic pollution to protect the environment, animals and humans.

13.
J Hum Genet ; 67(8): 495-501, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35428841

ABSTRACT

Duchenne muscular dystrophy (DMD, MIM #310200) and Becker muscular dystrophy (BMD, MIM #300376) are X-linked recessive hereditary diseases caused by pathogenic variants in the DMD gene. Genetic testing of DMD identifies a certain number of variants of uncertain clinical significance (VUS) whose functional interpretations pose a challenge for gene-based diagnosis. To improve the accuracy of variant interpretation in public mutation repositories, we used computational tools to prioritize VUS and developed a cell-based minigene assay to confirm aberrant splicing. Using this procedure, we evaluated rare variants in exon and intron 10 of the DMD gene. We demonstrated that 16 variants, including both canonical and non-canonical splice sites, altered RNA splicing in variable patterns. Using the example of exon and intron 10 of the DMD gene, we demonstrated the utility of the in vitro minigene assay in the effective assessment of the spliceogenic effect for VUS identified in clinical practice and underlined the necessity of precise variant classification. This is the first systematic characterization of DMD splicing variants, besides, through our study, some undetermined variants are demonstrated to be pathogenic by altering RNA splicing of DMD.


Subject(s)
Muscular Dystrophy, Duchenne , RNA Splicing , Dystrophin/genetics , Exons/genetics , Humans , Introns/genetics , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Mutation , RNA Splicing/genetics
14.
Toxicol Ind Health ; 38(3): 182-191, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35238255

ABSTRACT

2,2',4,4' -tetrabromodiphenyl ether (BDE47), a well-known endocrine disruptor of the estrogen receptor (ER) is toxic to the mitochondria and spermatogenesis. This study aimed to explore the mechanism of BDE47 on spermatogenesis in mammals. Adult male Institute of Cancer Research (ICR) mice were gavaged daily with BDE47 (0, 1, or 10 mg/kg bw) for 8 weeks. Testicular weight, sperm production and motility, morphology of spermatogenic cells, nuclear respiratory factor 1 (Nrf1) level, and its expression in testes were determined. In vitro, cell viability, and key molecules in the ER-Nrf1-mitochondrial transcription factor A (Tfam)-mitochondria pathway in the immortalized mouse spermatogonia line (GC1) were determined at 48 h and 0-5 h after exposure; RNA interference (RNAi) was also performed to verify that the decreased Nrf1 was associated with mitochondrial dysfunction and the impaired viability of germ cells. The results indicated that BDE47 impaired testis weight and spermatogenesis, impaired mitochondria and germ cells, and decreased Nrf1 in the testes of mice. In vitro, after 48 h exposure, BDE47 reduced cell viability, Nrf1 protein, and mRNA of Nrf1, Tfam, ATP synthase subunit ß (Atp5b), and cytochrome c oxidase subunit I (mt-CO1) in GC1 while also reducing mRNA of Nrf1 and Tfam promptly (from 1 to 5 h) after exposure. Furthermore, Nrf1 RNA interference decreased viability and mitochondrial function in GC1. These results indicated that BDE47 disrupts spermatogenesis in mice, probably by interfering with the ER-Nrf1-Tfam-mitochondria pathway, and Nrf1 is a target molecule of BDE47 estrogen receptor.


Subject(s)
Nuclear Respiratory Factor 1 , Receptors, Estrogen , Animals , DNA-Binding Proteins/metabolism , Ether/metabolism , Halogenated Diphenyl Ethers , High Mobility Group Proteins/metabolism , Male , Mammals/metabolism , Mice , Mitochondria/metabolism , Nuclear Respiratory Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism , Receptors, Estrogen/metabolism , Spermatogenesis
15.
J Nutr Biochem ; 100: 108888, 2022 02.
Article in English | MEDLINE | ID: mdl-34695558

ABSTRACT

This study aimed to investigate the therapeutic effects of nobiletin (NOB) on nonalcoholic steatohepatitis (NASH) and liver fibrosis in mice and to elucidate its underlying molecular mechanisms. BALB/c mice were fed a normal chow diet or a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for 8 wks and treated with NOB (50 mg/kg) or vehicle by daily intraperitoneally injection for the last 4 wks. In vitro, we used palmitate (PA) stimulated AML12 cells as the model of hepatocyte lipotoxicity to dissect the effect and molecular mechanisms of NOB' action. Our results exhibited that NOB dramatically reduced hepatic steatosis, lipid accumulation and hepatocyte apoptosis, and inhibited the infiltration of F4/80+ macrophages into the NASH livers. Furthermore, NOB limited liver fibrosis and hepatic stellate cells activation in NASH mice. In parallel, NOB alleviated hepatocytes apoptosis and lipid accumulation in PA-treated AML12 cells. Most importantly, these histological ameliorations in NASH and fibrosis in NOB-treated NASH mice were associated with improvement hepatic oxidative stress, lipid peroxidation product, mitochondrial respiratory chain complexes I and restored ATP production. Similarly, NOB attenuated PA-induced reactive oxygen species (ROS) generation and mitochondrial disfunction in cultured AML12 cells. Additionally, NOB diminished the expression of mitochondrial Ca2+ uniporter (MCU) both in NASH livers and in PA-treated AML12. Taken together, our results indicate that NOB mitigated NASH development and fibrosis through modulating hepatic oxidative stress and attenuating mitochondrial dysfunction. Therefore, NOB might be a novel and promising agent for treatment of NASH and liver fibrosis.


Subject(s)
Apoptosis , Flavones/pharmacology , Hepatocytes/physiology , Mitochondria, Liver/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress/drug effects , Animals , Cell Line , Diet, High-Fat , Flavones/therapeutic use , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/physiology , Hepatocytes/drug effects , Hepatocytes/metabolism , Lipid Metabolism , Liver Cirrhosis/drug therapy , Male , Mice , Mice, Inbred BALB C , Mitochondria, Liver/drug effects , Non-alcoholic Fatty Liver Disease/pathology
16.
Polymers (Basel) ; 13(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34833308

ABSTRACT

Advanced knowledge of the permeability characteristics of transparent gels play a key role in providing a rational basis for the study of porous polymer permeability and the research on the migration behavior of superpolymer solutions. Thus, a new type of transparent gel was prepared to simulate porous media, with aim to observe and analyze the permeability characteristics of transparent gel under the conditions of our experimental design by combining a transparent soil test and simple particle image velocimetry. The experimental results showed that the permeability of the transparent gel was similar to that through actual soil. The permeability coefficients of the transparent gel under different pressure gradients varied greatly early in the experimental cycle, while changing only slightly afterward, showing an overall trend of decreasing first and then stabilizing. With the increase of the mass ratio, the permeability coefficient of the sample decreased, the distribution of the low-velocity zone of the intercepted section became wider and tended to move upward. Differences in spatial position also caused different patterns of velocity and direction. The findings presented in this paper contribute to providing a new direction for the study of porous polymer permeability and the porous migration of superpolymer solutions.

17.
Biosci Rep ; 41(10)2021 10 29.
Article in English | MEDLINE | ID: mdl-34596222

ABSTRACT

During sperm cryopreservation, the most significant phenotype of cryodamage is the decrease in sperm motility. Several proteomics studies have already been performed to search for key regulators at the protein level. However, sperm functions are known to be highly regulated by phosphorylation signaling. Here, we constructed a quantitative phosphoproteome to investigate the expression change of phosphorylated sites during sperm cryopreservation. A total of 3107 phosphorylated sites are identified and 848 of them are found to be significantly differentially expressed (DE). Bioinformatics analysis showed that the corresponding genes of these regulated sites are highly associated with sperm motility, providing a connection between the molecular basis and the phenotype of cryodamage. We then performed kinase enrichment analysis and successfully identified glycogen synthase kinase-3α (GSK3A) as the key kinase that may play an important role in the regulation of sperm motility. We further constructed a GSK3A centric network that could help us better understand the molecular mechanism of cryodamage in sperm motility. Finally, we also verified that GSK3A was abnormally activated during this process. The presented phosphoproteome and functional associations provide abundant research resources for us to learn the regulation of sperm functions, as well as to optimize the cryoprotectant for sperm cryopreservation.


Subject(s)
Cryopreservation , Glycogen Synthase Kinase 3/metabolism , Proteome , Proteomics , Sperm Motility , Spermatozoa/enzymology , Cryoprotective Agents/pharmacology , Humans , Male , Phosphorylation , Protein Interaction Maps , Signal Transduction , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/ultrastructure , Tandem Mass Spectrometry
18.
Genet Med ; 23(11): 2122-2137, 2021 11.
Article in English | MEDLINE | ID: mdl-34345025

ABSTRACT

PURPOSE: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. METHODS: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. RESULTS: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. CONCLUSION: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.


Subject(s)
Epilepsy , Histone-Lysine N-Methyltransferase , Intellectual Disability , Neurodevelopmental Disorders , Epilepsy/diagnosis , Epilepsy/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Male , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Phenotype , Seizures/diagnosis , Seizures/genetics
19.
Front Neurol ; 12: 632370, 2021.
Article in English | MEDLINE | ID: mdl-34248813

ABSTRACT

Objective: Intractable epilepsy and uncontrolled seizures could affect cardiac function and the autonomic nerve system with a negative impact on children's growth. The aim of this study was to investigate the variability and complexity of cardiac autonomic function in pre-school children with pediatric intractable epilepsy (PIE). Methods: Twenty four-hour Holter electrocardiograms (ECGs) from 93 patients and 46 healthy control subjects aged 3-6 years were analyzed by the methods of traditional heart rate variability (HRV), multiscale entropy (MSE), and Kurths-Wessel symbolization entropy (KWSE). Receiver operating characteristic (ROC) curve analysis was used to estimate the overall discrimination ability. Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) models were also analyzed. Results: Pre-school children with PIE had significantly lower HRV measurements than healthy controls in time (Mean_RR, SDRR, RMSSD, pNN50) and frequency (VLF, LF, HF, LF/HF, TP) domains. For the MSE analysis, area 1_5 in awake state was lower, and areas 6_15 and 6_20 in sleep state were higher in PIE with a significant statistical difference. KWSE in the PIE group was also inferior to that in healthy controls. In ROC curve analysis, pNN50 had the greatest discriminatory power for PIE. Based on both NRI and IDI models, the combination of MSE indices (wake: area1_5 and sleep: area6_20) and KWSE (m = 2, τ = 1, α = 0.16) with traditional HRV measures had greater discriminatory power than any of the single HRV measures. Significance: Impaired HRV and complexity were found in pre-school children with PIE. HRV, MSE, and KWSE could discriminate patients with PIE from subjects with normal cardiac complexity. These findings suggested that the MSE and KWSE methods may be helpful for assessing and understanding heart rate dynamics in younger children with epilepsy.

20.
CNS Neurosci Ther ; 27(10): 1146-1156, 2021 10.
Article in English | MEDLINE | ID: mdl-34109749

ABSTRACT

AIMS: CHD4 gene, encoding chromodomain helicase DNA-binding protein 4, is a vital gene for fetal development. In this study, we aimed to explore the association between CHD4 variants and idiopathic epilepsy. METHODS: Trios-based whole-exome sequencing was performed in a cohort of 482 patients with childhood idiopathic epilepsy. The Clinical Validity Framework of ClinGen and an evaluating method from five clinical-genetic aspects were used to determine the association between CHD4 variants and epilepsy. RESULTS: Four novel heterozygous missense mutations in CHD4, including two de novo mutations (c.1597A>G/p.K533E and c.4936G>A/p.E1646K) and two inherited mutations with co-segregation (c.856C>G/p.P286A and c.4977C>G/p.D1659E), were identified in four unrelated families with eight individuals affected. Seven affected individuals had sinus arrhythmia. From the molecular sub-regional point of view, the missense mutations located in the central regions from SNF2-like region to DUF1087 domain were associated with multisystem developmental disorders, while idiopathic epilepsy-related mutations were outside this region. Strong evidence from ClinGen Clinical Validity Framework and evidences from four of the five clinical-genetic aspects suggested an association between CHD4 variants and epilepsy. CONCLUSIONS: CHD4 was potentially a candidate pathogenic gene of childhood idiopathic epilepsy with arrhythmia. The molecular sub-regional effect of CHD4 mutations helped explaining the mechanisms underlying phenotypic variations.


Subject(s)
Arrhythmia, Sinus/genetics , Epilepsy/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Adolescent , Child , Cohort Studies , Electroencephalography , Female , Genetic Variation , Genotype , Humans , Male , Middle Aged , Mutation , Mutation, Missense , Phenotype , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...