Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-26212887

ABSTRACT

This study investigates the bone/implant mechanical responses in an implant overdenture retained by ball attachments on two conventional regular dental implants (RDI) and four mini dental implants (MDI) using finite element (FE) analysis. Two FE models of overdentures retained by RDIs and MDIs for a mandibular edentulous patient with validation within 6% variation errors were constructed by integrating CT images and CAD system. Bone grafting resulted in 2 mm thickness at the buccal side constructed for the RDIs-supported model to mimic the bone augmentation condition for the atrophic alveolar ridge. Nonlinear hyperelastic material and frictional contact element were used to simulate characteristic of the ball attachment-retained overdentures. The results showed that a denture supported by MDIs presented higher surrounding bone strains than those supported by RDIs under different load conditions. Maximum bone micro strains were up to 6437/2987 and 13323/5856 for MDIs/RDIs under single centric and lateral contacts, respectively. Corresponding values were 4429/2579 and 9557/5774 under multi- centric and lateral contacts, respectively. Bone micro strains increased 2.06 and 1.96-folds under single contact, 2.16 and 2.24-folds under multiple contacts for MDIs and RDIs when lateral to axial loads were compared. The maximum RDIs and MDIs implant stresses in all simulated cases were found by far lower than their yield strength. Overdentures retained using ball attachments on MDIs in poor edentulous bone structure increase the surrounding bone strain over the critical value, thereby damaging the bone when compared to the RDIs. Eliminating the occlusal single contact and oblique load of an implant-retained overdenture reduces the risk for failure.


Subject(s)
Dental Implants , Denture, Overlay , Finite Element Analysis , Mechanical Phenomena , Humans , Mandible/physiology , Reproducibility of Results , Stress, Mechanical
2.
Int J Oral Maxillofac Implants ; 27(6): e102-11, 2012.
Article in English | MEDLINE | ID: mdl-23189315

ABSTRACT

PURPOSE: The present study investigated the biomechanical interactions of a monocortically or bicortically engaged short and wide implant in the atrophic posterior maxilla and compared them to those of a long implant in the augmented sinus under different loading conditions via a nonlinear finite element (FE) approach. MATERIALS AND METHODS: Nonlinear FE models of a single implant in the posterior maxilla were constructed for the following conditions: (1) A monocortically engaged 5-mm-long, 7-mm-wide implant with an internal tripodgrip abutment connection (SIT-1), (2) a bicortically engaged 6-mm-long, 7-mm-wide implant with internal tripod-grip abutment connection (SIT-2), and (3) a 13-mm-long, 4.5-mm-wide implant with an internal-hexagon abutment connection in an augmented sinus. Simulated loads of 150 N were applied axially at the central fossa, off-axis at the buccal and palatal cusps, and toward the axis at the buccal and palatal cusps. RESULTS: The simulated results showed that loading condition was the main factor influencing the mechanical responses. Oblique occlusal forces increased implant stress and stress/strain values for the surrounding bone. The use of a long implant decreased the implant stress but increased the bone stress/strain values relative to a short and wide implant. The SIT-1 and SIT-2 implants increased the implant stress on average by 2.94 and 2.67 fold, respectively. However, the SIT-2 implant reduced the average stress and strain in bone by 37%, and the SIT-1 implant reduced average stress by 33% and average strain by 32%. CONCLUSIONS: Placement of a short and wide implant in the atrophic posterior maxilla may be a possible alternative for reducing the strain/stress on the surrounding bone. Detrimental off-axis loads should always be minimized to prevent extraordinarily high bone strain and stress.


Subject(s)
Bite Force , Dental Implants , Maxilla/pathology , Sinus Floor Augmentation , Stress, Mechanical , Atrophy , Dental Prosthesis Design , Dental Stress Analysis/methods , Finite Element Analysis , Humans
3.
Med Eng Phys ; 34(2): 153-60, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21807548

ABSTRACT

Short dental implant (SDI) placement has been proposed as an alternative to reduce the surgical risks related to the advanced grafting procedures. The aim of this study was to simulate the biomechanical behaviors and influences of SDI diameters under various conditions of bone quality by using a validated finite element (FE) model for simulation. The CT image and CAD system were combined to construct the FE models with 6 mm length SDIs for 6, 7 and 8 mm diameters under three types of bone qualities, from normal to osteoporotic. The simulated results showed that implant diameter did not influence the von Mises strains of bone under the vertical load. The bone strains increased about 58.58% in the bone of least density under lateral load. Lateral loads induced high bone strain and implant stress than vertical loads. The bone strains of 7 mm- and 8 mm-diameter short implants were not different, and both were about 52% and 66% compared to those of 6 mm-wide short implant under lateral loads. The von Mises stress of the SDIs and their compartments were all less than the yield stress of the material under vertical and lateral loads. SDIs with diameter of 7 mm or above may have better mechanical transmission in the same length at feasible condition. Attaining a proper occlusal scheme design or selective occlusal adjustments to reduce the lateral occlusal force upon the SDIs is recommended.


Subject(s)
Dental Implants , Finite Element Analysis , Maxilla/pathology , Mechanical Phenomena , Atrophy , Biomechanical Phenomena , Humans , Male , Reproducibility of Results , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...