Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Neural Regen Res ; 20(2): 491-502, 2025 Feb 01.
Article in English | MEDLINE | ID: mdl-38819062

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202502000-00027/figure1/v/2024-05-28T214302Z/r/image-tiff Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury. Low-density lipoprotein receptor, a classic cholesterol regulatory receptor, has been found to inhibit NLR family pyrin domain containing protein 3 (NLRP3) inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer's disease. However, little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke. To address this issue in the present study, we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models. First, we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis. We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation. Second, we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus. Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype. Finally, we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin, an NLRP3 agonist, restored the neurotoxic astrocyte phenotype. These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.

2.
Quant Imaging Med Surg ; 14(7): 4688-4702, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022239

ABSTRACT

Background: Dual-energy computed tomography (DECT) and iterative metal artifact reduction (iMAR) algorithms are valuable tools for reducing metal artifacts. Different parameters of these technologies and their combination can achieve different performance. This study compared various polychromatic and monochromatic images obtained via DECT with and without using iMAR algorithm to reduce artifacts in patients with dental implants. Methods: This study included 30 patients with dental implants who underwent DECT for head and neck imaging. The computed tomography (CT) image sets comprised DECT polychromatic image sets [dual-energy (DE) polychromatic] that linearly blended 100 kV and tin-filtered 140 kV images using composition ratios of -1, -0.6, -0.3, 0, and 0.6, and virtual monochromatic images (DE monochromatic) at 90, 110, 130, 150, and 170 keV. These image sets were obtained with and without using iMAR, resulting in a total of 20 image sets. For subjective analysis, metal artifacts and image quality were assessed using a 5-point Likert scale. For objective analysis, CT attenuation, standard deviation (SD), contrast-to-noise ratio (CNR) and artifact index (AI) were evaluated. In addition, subgroup analysis was performed based on implant size. Results: In the subjective evaluation, iMAR + DE polychromatic (-0.3) images exhibited the lowest metal artifact scores [median (interquartile range): 2 (2-3)]. iMAR + DE monochromatic (110 keV) images demonstrated optimal image quality scores [median (interquartile range): 2 (2-3)]. In the objective evaluation, none of the images demonstrated a significant difference in the CNR, except polychromatic images with a composition of -1 and 0.6. iMAR + DE polychromatic (0) exhibited the lowest AI [median (interquartile range): 8.7 (5.9-14.5)]. There was no significant difference between the two groups with different implant sizes for the techniques combined with iMAR (all P>0.05). Conclusion: iMAR + DE polychromatic (-0.3 and 0) and iMAR + DE monochromatic (110 keV) images exhibited better image quality and substantial metal artifact reduction (MAR) compared with the other image sets. The performance of the techniques combined with iMAR was not affected by the size of the implant.

3.
Neurol Sci ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969961

ABSTRACT

BACKGROUND: Neuromyelitis Optica Spectrum Disorder (NMOSD) is an autoimmune demyelinating disease characterized by recurrent myelitis and optic neuritis. It is associated with high rates of relapse and disability. The main treatment strategies for acute attacks include intravenous methylprednisolone pulse (IVMP) treatment and rescue treatment with plasma exchange (PLEX). Recently, the blockade of neonatal Fc receptor (FcRn)-IgG interaction has gained momentum as a therapeutic strategy. Efgartigimod, the first approved FcRn inhibitor for treating generalized myasthenia gravis, has shown impressive safety, efficacy, and tolerability, and is being regarded as "PLEX in a bottle". CASE DESCRIPTION: We report a 65-year-old female patient who was diagnosed with anti-AQP4 antibody positive NMOSD. Add-on treatment with efgartigimod to IVMP and intravenous immunoglobulin (IVIG) at the second acute relapse showed favorable results. CONCLUSION: This case suggests that efgartigimod is a potentially effective add-on therapy in acute attacks of AQP4-IgG-positive NMOSD.

4.
Food Chem ; 457: 140182, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38936131

ABSTRACT

Paper chip as a representative microfluidic device has been mushroomed for rapid identification of contaminants in agro-food. However, the sensitivity and accuracy have still been challenged by inevitable background noise or interference in food matrix. Herein, we designed and fabricated a dual-mode paper chip (DPC) by assembling a patterned paper electrode with a platinum nanoparticles-treated colorimetric region through a flow channel. Dual-mode outputs were guided by an aptamer-gated UiO-66-NH2 metal-organic frameworks (MOFs). UiO-66-NH2 loaded with 3, 3', 5, 5'-tetramethylbenzidine (TMB) was controlled by a switch comprised of CdS quantum dots-aptamer. Aflatoxin B1 (AFB1, a kind of carcinogenic mycotoxin) target came and induced TMB release, triggering colorimetric and ECL signals on DPC, ultra-high sensitivity with a detection limit of 7.8 fg/mL was realized. The practicability of the DPC was also confirmed by spiking AFB1 in real corn samples. This portable paper-based device provides an ideal rapid detection platform tailored for diverse food contaminants analysis.

5.
Front Med (Lausanne) ; 11: 1328687, 2024.
Article in English | MEDLINE | ID: mdl-38707184

ABSTRACT

Objective: To utilize radiomics analysis on dual-energy CT images of the pancreas to establish a quantitative imaging biomarker for type 2 diabetes mellitus. Materials and methods: In this retrospective study, 78 participants (45 with type 2 diabetes mellitus, 33 without) underwent a dual energy CT exam. Pancreas regions were segmented automatically using a deep learning algorithm. From these regions, radiomics features were extracted. Additionally, 24 clinical features were collected for each patient. Both radiomics and clinical features were then selected using the least absolute shrinkage and selection operator (LASSO) technique and then build classifies with random forest (RF), support vector machines (SVM) and Logistic. Three models were built: one using radiomics features, one using clinical features, and a combined model. Results: Seven radiomic features were selected from the segmented pancreas regions, while eight clinical features were chosen from a pool of 24 using the LASSO method. These features were used to build a combined model, and its performance was evaluated using five-fold cross-validation. The best classifier type is Logistic and the reported area under the curve (AUC) values on the test dataset were 0.887 (0.73-1), 0.881 (0.715-1), and 0.922 (0.804-1) for the respective models. Conclusion: Radiomics analysis of the pancreas on dual-energy CT images offers potential as a quantitative imaging biomarker in the detection of type 2 diabetes mellitus.

6.
Zootaxa ; 5403(2): 287-292, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38480441

ABSTRACT

The monotypic genus Uncobotyodes Kirti & Rose and its type species U. patulalis (Walker) are redescribed. The female genitalia of U. patulalis are described for the first time. An additional species, Uncobotyodes latizona sp. nov., is described as new to science. The two species of the genus are compared. Images of adults and their genitalia are provided.


Subject(s)
Lepidoptera , Moths , Female , Animals , Genitalia , China , Animal Distribution
7.
J Affect Disord ; 352: 76-86, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38360363

ABSTRACT

BACKGROUND: Microglial efferocytosis plays a crucial role in facilitating and sustaining homeostasis in the central nervous system, and it is involved in neuropsychiatric disorders. How microglial efferocytosis is affected under the condition of major depressive disorder (MDD) remains elusive. In this study, we hypothesized that microglial efferocytosis in the hippocampus is impaired in the chronic unpredicted mild stress (CUMS) model of MDD, which is involved in the development of MDD. METHOD: Depressive-like behavior in adult male mice was induced by CUMS and confirmed by behavioral tests. Microglial efferocytosis was evaluated using immunofluorescence staining of hippocampal slices and primary microglia co-cultured with apoptotic cells. The protein and mRNA levels of phagocytosis-related molecules and inflammation-related cytokines were detected using western blotting and RT-qPCR, respectively. Annexin V was injected to mimic impairment of microglial efferocytosis. TREM2-siRNA was further used on primary microglia to examine efferocytosis-related signaling pathways. RESULTS: Microglia were activated and the expression of proinflammatory cytokines was increased in CUMS mice, while microglial efferocytosis and efferocytosis-related molecules were decreased. Inhibition of the TREM2/Rac1 pathway impaired microglial efferocytosis. Annexin V injection inhibited microglial efferocytosis, increased inflammation in the hippocampus and depressive-like behavior. LIMITATIONS: The potential antidepressant effect of the upregulation of the TREM2/Rac1 pathway was not evaluated. CONCLUSIONS: Impairment of microglial efferocytosis is involved in the development of depressive-like behavior, with downregulation of the TREM2/Rac1 pathway and increased inflammation. These results may increase our understanding of the pathophysiological mechanisms associated with MDD and provide novel targets for therapeutic interventions.


Subject(s)
Depression , Depressive Disorder, Major , Mice , Male , Animals , Depression/psychology , Microglia/metabolism , Depressive Disorder, Major/metabolism , Efferocytosis , Annexin A5/metabolism , Annexin A5/pharmacology , Cytokines/metabolism , Inflammation/metabolism , Hippocampus/metabolism , Disease Models, Animal , Stress, Psychological/psychology
8.
J Control Release ; 366: 585-595, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215987

ABSTRACT

Cholesterol is an indispensable component of most liposomes, heavily influencing their physical and surface properties. In this study, cholesterol in non-PEGylated liposomes was replaced by its analog, asiatic acid (AA), to generate liposomes with an alternative composition. These AA liposomes are generally smaller and more rigid than conventional liposomes, circulate longer in the body, and accumulate more in primary tumors and lung metastases in vivo. On the other hand, as an active ingredient, AA can decrease TGF-ß secretion to inhibit the epithelial-mesenchymal transition (EMT) process, increase the sensitivity of tumor cells to doxorubicin (DOX), and synergize with DOX to enhance the immune response, thus improving their antitumor and anti-metastasis efficiency. Based on this rationale, DOX-loaded AA liposomes were fabricated and tested against triple-negative breast cancer (TNBC). Results showed that compared with conventional liposomes, the DOX-AALip provided approximately 28.4% higher tumor volume reduction with almost no metastatic nodules in the mouse model. Our data demonstrate that AA liposomes are safe, simple, and efficient, and thus in many situations may be used instead of conventional liposomes, having good potential for further clinical translational development.


Subject(s)
Cholesterol , Doxorubicin/analogs & derivatives , Liposomes , Pentacyclic Triterpenes , Mice , Animals , Cell Line, Tumor , Polyethylene Glycols
9.
Int Immunopharmacol ; 128: 111498, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38218011

ABSTRACT

Osteoarthritis (OA) is a common joint degenerative disease. There is currently no cure for OA. Dietary fatty acids have potential value in the prevention and treatment of OA. n-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory effects, but their anti-OA mechanism remains unclear. High-mobility group box 1 (HMGB1) promotes inflammation and participates the pathogenesis of OA. The purpose of this study was to investigate the protective effect of n-3 PUFAs on cartilage and whether n-3 PUFAs could exert an anti-OA effect through inhibiting HMGB1-RAGE/TLR4 signaling pathway. We established an obesity-related post-traumatic OA mice model and an in vitro study was conducted to explore the regulatory mechanism of n-3 PUFAs on HMGB1 and its signal pathway against OA. We found that diet rich in n-3 PUFAs alleviated OA-like lesions of articular cartilage with the decrease of HMGB1-RAGE/TLR4 signaling protein in mice. In SW1353 cells, DHA significantly reduced the expression of HMGB1-RAGE/TLR4 signaling protein which was up-regulated by IL-1ß stimulation. HMGB1 overexpression reversed the inhibitory effect of DHA on HMGB1-RAGE/TLR4 signaling pathway. The activation of SIRT1 may participate the inhibitory effect of DHA on HMGB1-RAGE/TLR4 signaling pathway. In conclusion, n-3 PUFAs could attenuate the progression of obesity-related OA and exert protective effect on cartilage by inhibiting HMGB1-RAGE/TLR4 signaling pathway, which may be associated with the activation of SIRT1. Dietary n-3 PUFAs supplements can be considered as a potential therapeutic substance for OA.


Subject(s)
Fatty Acids, Omega-3 , HMGB1 Protein , Osteoarthritis , Mice , Animals , Toll-Like Receptor 4/metabolism , Sirtuin 1/metabolism , HMGB1 Protein/metabolism , Signal Transduction , Osteoarthritis/metabolism , Cartilage/metabolism , Obesity , Receptor for Advanced Glycation End Products
10.
Basic Res Cardiol ; 119(1): 169-192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38147128

ABSTRACT

Adult mammalian cardiomyocytes have minimal cell cycle capacity, which leads to poor regeneration after cardiac injury such as myocardial infarction. Many positive regulators of cardiomyocyte cell cycle and cardioprotective signals have been identified, but extracellular signals that suppress cardiomyocyte proliferation are poorly understood. We profiled receptors enriched in postnatal cardiomyocytes, and found that very-low-density-lipoprotein receptor (Vldlr) inhibits neonatal cardiomyocyte cell cycle. Paradoxically, Reelin, the well-known Vldlr ligand, expressed in cardiac Schwann cells and lymphatic endothelial cells, promotes neonatal cardiomyocyte proliferation. Thrombospondin1 (TSP-1), another ligand of Vldlr highly expressed in adult heart, was then found to inhibit cardiomyocyte proliferation through Vldlr, and may contribute to Vldlr's overall repression on proliferation. Mechanistically, Rac1 and subsequent Yap phosphorylation and nucleus translocation mediate the regulation of the cardiomyocyte cell cycle by TSP-1/Reelin-Vldlr signaling. Importantly, Reln mutant neonatal mice displayed impaired cardiomyocyte proliferation and cardiac regeneration after apical resection, while cardiac-specific Thbs1 deletion and cardiomyocyte-specific Vldlr deletion promote cardiomyocyte proliferation and are cardioprotective after myocardial infarction. Our results identified a novel role of Vldlr in consolidating extracellular signals to regulate cardiomyocyte cell cycle activity and survival, and the overall suppressive TSP-1-Vldlr signal may contribute to the poor cardiac repair capacity of adult mammals.


Subject(s)
Myocardial Infarction , Thrombospondin 1 , Animals , Mice , Cell Proliferation , Endothelial Cells/metabolism , Ligands , Mammals , Mice, Knockout , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Regeneration , Thrombospondin 1/metabolism
11.
Expert Rev Vaccines ; 23(1): 69-81, 2024.
Article in English | MEDLINE | ID: mdl-38055218

ABSTRACT

BACKGROUND: There is a lack of synthesis of literature to determine hepatitis B vaccine (HepB) strategies for hepatitis B virus (HBV) supported by quality evidence. We aimed to explore the efficacy and safety of HepB strategies among people with different characteristics. RESEARCH DESIGN AND METHODS: PubMed, Cochrane Library, Embase, and Web of Science were searched for meta-analyses comparing the efficacy and safety of HepB up to July 2023. RESULTS: Twenty-one meta-analyses comparing 83 associations were included, with 16 high quality, 4 moderate, and 1 low quality assessed by AMSTAR 2. Highly suggestive evidence supports HepB booster and HepB with 1018 adjuvant (HBsAg-1018) for improved seroprotection, and targeted and universal HepB vaccination reduced HBV infection Suggestive evidence indicated that targeted vaccination decreased the rate of hepatitis B surface antibody positivity and booster doses increased seroprotection in people aged 10-20. Weak evidence suggests potential local/systemic reaction risk with nucleotide analogs or HBsAg-1018. Convincing evidence shows HLA-DPB1*04:01 and DPB1*04:02 increased, while DPB1*05:01 decreased, hepatitis B antibody response. Obesity may reduce HepB seroprotection, as highly suggested. CONCLUSION: Targeted vaccination could effectively reduce HBV infection, and adjuvant and booster vaccinations enhance seroprotection without significant reaction. Factors such as obesity and genetic polymorphisms may affect the efficacy.


Subject(s)
Hepatitis B Vaccines , Hepatitis B , Humans , Hepatitis B Vaccines/adverse effects , Hepatitis B Surface Antigens , Hepatitis B Antibodies , Vaccination , Hepatitis B virus , Hepatitis B/prevention & control , Adjuvants, Immunologic , Obesity
12.
Eur J Pharm Sci ; 193: 106672, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38103658

ABSTRACT

Changes in RNA editing are closely associated with diseases such as cancer, viral infections, and autoimmune disorders. Adenosine deaminase (ADAR1), which acts on RNA 1, plays a key role in adenosine to inosine editing and is a potential therapeutic target for these various diseases. The p150 subtype of ADAR1 is the only one that contains a Zα domain that binds to both Z-DNA and Z-RNA. The Zα domain modulates immune responses and may be suitable targets for antiviral therapy and cancer immunotherapy. In this study, we attempted to utilize molecular docking to identify potential inhibitors that bind to the ADAR1 Zα domain. The virtual docking method screened the potential activity of more than 100,000 compounds on the Zα domain of ADAR1 and filtered to obtain the highest scoring results.We identified 71 compounds promising to bind to ADAR1 and confirmed that two of them, lithospermic acid and Regaloside B, interacts with the ADAR1 Zα domain by surface plasmonic resonance technique. The molecular dynamics calculation of the complex of lithospermic acid and ADAR1 also showed that the binding effect of lithospermic acid to ADAR1 was stable.This study provides a new perspective for the search of ADAR1 inhibitors, and further studies on the anti-ADAR11 activity of these compounds have broad prospects.


Subject(s)
Benzofurans , Depsides , Neoplasms , RNA , Humans , Binding Sites , Adenosine Deaminase/chemistry , Adenosine Deaminase/metabolism , Molecular Docking Simulation
13.
Front Neurol ; 14: 1295374, 2023.
Article in English | MEDLINE | ID: mdl-38046596

ABSTRACT

Objective: Emerging evidence shows that patients with myasthenia gravis (MG) were at a higher risk for the co-occurrence of other autoimmune diseases, which reflects phenotypic heterogeneity in MG. The coexistence of MG and cryptogenic organizing pneumonia (COP) has rarely been reported. The present case is to report the coexistence of triple-seronegative MG and pathology-proven COP in a patient. Methods: The clinical data of the patient were derived from medical records of Nanjing First Hospital, Nanjing Medical University, China. Written informed consent was obtained from the patient. Results: We presented a 56-year-old man with acute respiratory syndrome, who was diagnosed with COP based on the intra-alveolar fibroinflammatory buds (Masson's bodies) in the pathology of bronchoscopy biopsy. Oral prednisone induced dramatic symptomatic improvement and complete resolution of previous lung lesions. After a stable course of no respiratory symptom for 2 months, he was referred to the neurology department with complaints of fluctuating generalized muscle weakness. He was diagnosed with triple-seronegative MG based on fluctuating weakness, neostigmine test-positivity and RNS-positivity. After three-month treatment with pyridostigmine in combination with tacrolimus, the symptoms gradually improved and he achieved minimal symptom expression. Conclusions: This case highlights the rare coexistence of triple-seronegative MG and pathology-proven COP. However, a causal association between COP and MG cannot be explicitly ascertained. In future, more data are needed to clarify the relationship, taking into account the limited number of cases reported with this coexistence of the diseases.

14.
Proc Natl Acad Sci U S A ; 120(47): e2309200120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37967221

ABSTRACT

Patients with Hutchinson-Gilford progeria syndrome (HGPS) present with a number of premature aging phenotypes, including DNA damage accumulation, and many of them die of cardiovascular complications. Although vascular pathologies have been reported, whether HGPS patients exhibit cardiac dysfunction and its underlying mechanism is unclear, rendering limited options for treating HGPS-related cardiomyopathy. In this study, we reported a cardiac atrophy phenotype in the LmnaG609G/G609G mice (hereafter, HGPS mice). Using a GFP-based reporter system, we demonstrated that the efficiency of nonhomologous end joining (NHEJ) declined by 50% in HGPS cardiomyocytes in vivo, due to the attenuated interaction between γH2AX and Progerin, the causative factor of HGPS. As a result, genomic instability in cardiomyocytes led to an increase of CHK2 protein level, promoting the LKB1-AMPKα interaction and AMPKα phosphorylation, which further led to the activation of FOXO3A-mediated transcription of atrophy-related genes. Moreover, inhibiting AMPK enlarged cardiomyocyte sizes both in vitro and in vivo. Most importantly, our proof-of-concept study indicated that isoproterenol treatment significantly reduced AMPKα and FOXO3A phosphorylation in the heart, attenuated the atrophy phenotype, and extended the mean lifespan of HGPS mice by ~21%, implying that targeting cardiac atrophy may be an approach to HGPS treatment.


Subject(s)
Aging, Premature , Progeria , Humans , Mice , Animals , Progeria/metabolism , Heart , DNA Damage , Genomic Instability , AMP-Activated Protein Kinases/genetics , Lamin Type A/genetics , Lamin Type A/metabolism
15.
Phys Rev Lett ; 131(16): 168001, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37925704

ABSTRACT

Unraveling the oxidation of graphitic lattice is of great interest for atomic-scale lattice manipulation. Herein, we build epoxy cluster, atom by atom, using Van der Waals' density-functional theory aided by Clar's aromatic π-sextet rule. We predict the formation of cyclic epoxy trimers and its linear chains propagating along the armchair direction of the lattice to minimize the system's energy. Using low-temperature scanning tunneling microscopy on oxidized graphitic lattice, we identify linear chains as bright features that have a threefold symmetry, and which exclusively run along the armchair direction of the lattice confirming the theoretical predictions.

16.
J Phys Chem C Nanomater Interfaces ; 127(45): 22015-22022, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38024196

ABSTRACT

The exposure of graphene to O3 results in functionalization of its lattice with epoxy, even at room temperature. This reaction is of fundamental interest for precise lattice patterning, however, is not well understood. Herein, using van der Waals density functional theory (vdW-DFT) incorporating spin-polarized calculations, we find that O3 strongly physisorbs on graphene with a binding energy of -0.46 eV. It configures in a tilted position with the two terminal O atoms centered above the neighboring graphene honeycombs. A dissociative chemisorption follows by surpassing an energy barrier of 0.75 eV and grafting an epoxy group on graphene reducing the energy of the system by 0.14 eV from the physisorbed state. Subsequent O3 chemisorption is preferred on the same honeycomb, yielding two epoxy groups separated by a single C-C bridge. We show that capturing the onset of spin in oxygen during chemisorption is crucial. We verify this finding with experiments where an exponential increase in the density of epoxy groups as a function of reaction temperature yields an energy barrier of 0.66 eV, in agreement with the DFT prediction. These insights will help efforts to obtain precise patterning of the graphene lattice.

17.
Radiother Oncol ; 189: 109942, 2023 12.
Article in English | MEDLINE | ID: mdl-37813310

ABSTRACT

BACKGROUND AND PURPOSE: The study aimed to investigate the correlation between radiation doses to the hippocampi and the psychological status of patients with stage T1-2 nasopharyngeal carcinoma (NPC) undergoing intensity modulated radiotherapy (IMRT) and recommend proper hippocampal dose limits for preserving patients' psychological well-being. MATERIALS AND METHODS: A retrospective study was conducted involving 152 newly diagnosed NPC patients. The patients' psychological status was assessed using the Hospital Anxiety and Depression Scale (HADS) before and after radiotherapy. The hippocampi were manually delineated on treatment planning images, and dosimetric parameters were obtained from dose-volume histograms. Logistic regression analysis was performed to identify influential dosimetric factors associated with anxiety and depression. RESULTS: The results showed that several dosimetric parameters to the hippocampi were significantly associated with anxiety but not depression. The optimal cut-off value for the independent predictor of anxiety was determined as D40 to hippocampi > 1500 cGy. Patients with D40 to hippocampi > 1500 cGy showed a higher probability for anxiety after radiotherapy. CONCLUSION: This study provides insights into the relationship between radiation doses to the hippocampi and the psychological status of stage T1-2 NPC patients undergoing IMRT. It suggests the importance of hippocampal protection for preserving patients' psychological well-being. Further studies are needed to validate these results.


Subject(s)
Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/pathology , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Hippocampus/pathology , Radiation Dosage
18.
IEEE J Biomed Health Inform ; 27(11): 5542-5553, 2023 11.
Article in English | MEDLINE | ID: mdl-37669209

ABSTRACT

In medical image analysis, blood vessel segmentation is of considerable clinical value for diagnosis and surgery. The predicaments of complex vascular structures obstruct the development of the field. Despite many algorithms have emerged to get off the tight corners, they rely excessively on careful annotations for tubular vessel extraction. A practical solution is to excavate the feature information distribution from unlabeled data. This work proposes a novel semi-supervised vessel segmentation framework, named EXP-Net, to navigate through finite annotations. Based on the training mechanism of the Mean Teacher model, we innovatively engage an expert network in EXP-Net to enhance knowledge distillation. The expert network comprises knowledge and connectivity enhancement modules, which are respectively in charge of modeling feature relationships from global and detailed perspectives. In particular, the knowledge enhancement module leverages the vision transformer to highlight the long-range dependencies among multi-level token components; the connectivity enhancement module maximizes the properties of topology and geometry by skeletonizing the vessel in a non-parametric manner. The key components are dedicated to the conditions of weak vessel connectivity and poor pixel contrast. Extensive evaluations show that our EXP-Net achieves state-of-the-art performance on subcutaneous vessel, retinal vessel, and coronary artery segmentations.


Subject(s)
Algorithms , Retinal Vessels , Humans , Coronary Vessels , Electric Power Supplies , Knowledge , Image Processing, Computer-Assisted
19.
Chemosphere ; 344: 140322, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37775059

ABSTRACT

The essential factor of catalytic ozonation technology relies on an efficient and stable catalyst. The construction of highly dispersed active sites on heterogeneous catalysts is an ideal strategy to combine the merits of homogeneous and heterogeneous catalysis with high activity and stability. Herein, an iron-containing mesoporous silica material (Fe-SBA15) with sufficient iron site exposure and enhanced intrinsic activity of active sites was employed to activate ozone for bisphenol A (BPA) degradation. Approximately 100% of BPA and 36.6% of total organic carbon (TOC) removal were realized by the Fe-SBA15 catalytic ozonation strategy with a reaction constant of 0.076 min-1, well beyond the performance of FeOx/SBA15 mixture and Fe2O3. Radical quenching experiments and electron paramagnetic resonance (EPR) analysis demonstrated that the hydroxyl radicals (HO•) and superoxide radicals (O2•-) played an important role in the degradation process. The iron sites with recyclable Fe(III)/Fe(II) pairs act as both the electron donors and active sites for catalytic ozonation. The mesoporous framework of SBA15 in Fe-SBA15 stabilizes the iron sites that enhance its stability. With high catalytic performance and high reusability for catalytic ozonation of BPA, the Fe-SBA15 is expected to be a promising catalyst in catalytic ozonation for wastewater treatment.


Subject(s)
Ozone , Water Pollutants, Chemical , Iron/chemistry , Catalytic Domain , Catalysis , Ozone/chemistry , Water Pollutants, Chemical/analysis
20.
Phytother Res ; 37(12): 5837-5853, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37621136

ABSTRACT

Upon prolonged use of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small-cell lung cancer (NSCLC), acquired drug resistance inevitably occurs. This study investigates the combined use of EGFR-TKIs (gefitinib or osimertinib) with epigallocatechin gallate (EGCG) to overcome acquired drug resistance in NSCLC models. The in vitro antiproliferative effects of EGFR-TKIs and EGCG combination in EGFR-mutant parental and resistant cell lines were evaluated. The in vivo efficacy of the combination was assessed in xenograft mouse models derived from EGFR-TKI-resistant NSCLC cells. We found that the combined use of EGFR-TKIs and EGCG significantly reversed the Warburg effect by suppressing glycolysis while boosting mitochondrial respiration, which was accompanied by increased cellular ROS and decreased lactate secretion. The combination effectively activated the AMPK pathway while inhibited both ERK/MAPK and AKT/mTOR pathways, leading to cell cycle arrest and apoptosis, particularly in drug-resistant NSCLC cells. The in vivo results obtained from mouse tumor xenograft model confirmed that EGCG effectively overcame osimertinib resistance. This study revealed that EGCG suppressed cancer bypass survival signaling and altered cancer metabolic profiles, which is a promising anticancer adjuvant of EGFR-TKIs to overcome acquired drug resistance in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins c-akt/metabolism , AMP-Activated Protein Kinases , Lung Neoplasms/pathology , Cell Proliferation , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm , ErbB Receptors , Glucose/pharmacology , Cell Line, Tumor , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...